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Abstract
I provide a basic introduction to modern helicity amplitude methods, including
color organization, the spinor helicity formalism, and factorization properties.
I also describe the BCFW (on-shell) recursion relation at tree level, and explain
how similar ideas — unitarity and on-shell methods — work at the loop level.
These notes are based on lectures delivered at the 2012 CERN Summer School
and at TASI 2013.

1 Introduction
Scattering amplitudes are at the heart of high energy physics. They lie at the intersection between quan-
tum field theory and collider experiments. Currently we are in the hadron collider era, which began at
the Tevatron and has now moved to the Large Hadron Collider (LHC). Hadron colliders are broadband
machines capable of great discoveries, such as the Higgs boson [1], but there are also huge Standard
Model backgrounds to many potential signals. If we are to discover new physics (besides the Higgs
boson) at the LHC, we will need to understand the old physics of the Standard Model at an exquisitely
precise level. QCD dominates collisions at the LHC, and the largest theoretical uncertainties for most
processes are due to our limited knowledge of higher order terms in perturbative QCD.

Many theorists have been working to improve this situation. Some have been computing the next-
to-leading order (NLO) QCD corrections to complex collider processes that were previously only known
at leading order (LO). LO uncertainties are often of order one, while NLO uncertainties can be in the
10–20% range, depending on the process. Others have been computing the next-to-next-to-leading order
(NNLO) corrections to benchmark processes that are only known at NLO; most NNLO predictions have
uncertainties in the range of 1–5%, allowing precise experimental measurements to be interpreted with
similar theoretical precision. Higher-order computations have a number of technical ingredients, but they
all require loop amplitudes, one-loop for NLO, and both one- and two-loop for NNLO, as well as tree
amplitudes of higher multiplicity.

The usual textbook methods for computing an unpolarized cross section involve squaring the scat-
tering amplitude at the beginning, then summing analytically over the spins of external states, and trans-
forming the result into an expression that only involves momentum invariants (Mandelstam variables)
and masses. For complex processes, this approach is usually infeasible. If there are N Feynman dia-
grams for an amplitude, then there are N2 terms in the square of the amplitude. It is much better to
calculate the N terms in the amplitude, as a complex number, and then compute the cross section by
squaring that number. This approach of directly computing the amplitude benefits greatly from the fact
that many amplitudes are much simpler than one might expect from the number of Feynman diagrams
contributing to them.

In order to compute the amplitude directly, one has to pick a basis for the polarization states of the
external particles. At collider energies, most of these particles are effectively massless: the light quarks
and gluons, photons, and the charged leptons and neutrinos (decay products of W and Z bosons). Mass-
less fermions have the property that their chirality and helicity coincide, and their chirality is preserved
by the gauge interactions. Therefore the helicity basis is clearly an optimal one for massless fermions,
because many matrix elements (the helicity-flip ones) will always vanish.

Around three decades ago, it was realized that the helicity basis was extremely useful for massless
vector bosons as well [2]. Many tree-level amplitudes were found to vanish in this basis as well (which
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could be explained by a secret supersymmetry obeyed by tree amplitudes [3, 4]). Also, the nonvanishing
amplitudes were found to possess a hierarchy of simplicity, depending on how much they violated helicity
“conservation”. For example, a simple one-term expression for the tree amplitudes for scattering an
arbitrary number of gluons with maximal helicity violation (MHV) was found by Parke and Taylor in
1986 [5], and proven recursively by Berends and Giele shortly thereafter [6].

As the first loop computations were performed for gluon scattering in the helicity basis [7, 8],
it became apparent that (relative) simplicity of amplitudes could extend to the loop level. One way to
maintain the simplicity is to use unitarity [9] to determine loop amplitudes by using tree amplitudes as
input. These methods have been refined enormously over the years, and automated in order to handle
very complicated processes. They now form an important part of the arsenal for theorists providing NLO
results for LHC experiments. Many of the methods are now being further refined and extended to the
two-loop level, and within a few years we may see a similar NNLO arsenal come to full fruition.

Besides QCD, unitarity-based methods have also found widespread application to scattering am-
plitudes for more formal theories, such as N = 4 super-Yang-Mills theory and N = 8 supergravity, just
to mention a couple of examples. The more supersymmetry, the greater the simplicity of the amplitudes,
allowing analytical results to be obtained for many multi-loop amplitudes (at least before integrating over
the loop momentum). These results have helped to expose new symmetries, which have in turn led to
other powerful methods for computing in these special theories.

The purpose of these lecture notes is to provide a brief and basic introduction to modern amplitude
methods. They are intended for someone who has taken a first course in quantum field theory, but who has
never studied these methods before. For someone who wants to go on further and perform research using
such methods in either QCD or more formal areas, these notes will be far from sufficient. Fortunately,
there are much more thorough reviews available. In particular, methods for one-loop QCD amplitudes
have been reviewed in refs. [10–13]. Also, a very recent and comprehensive article [14] covers much
of the material covered here, plus a great deal more, particularly in the direction of methods for multi-
loop amplitudes in more formal theories. There are also reviews of basic tree-level organization and
properties [15–17] and of one-loop unitarity [18]. Other reviews emphasize N = 4 super-Yang-Mills
theory [19, 20].

These notes are organized as follows. In Section 2 we describe trace-based color decompositions
for QCD amplitudes. In Section 3 we review the spinor helicity formalism, and apply it to the computa-
tion of some simple four- and five-point tree amplitudes. In Section 4 we use these results to illustrate the
universal soft and collinear factorization of gauge theory amplitudes. We also introduce the Parke-Taylor
amplitudes, and discuss the utility of spinor variables for describing collinear limits and massless three-
point kinematics. In Section 5 we explain the BCFW (on-shell) recursion relation for tree amplitudes,
and apply it to the Parke-Taylor amplitudes, as well as to a next-to-MHV example. Section 6 discusses
the application of generalized unitarity to one-loop amplitudes, and in Section 7 we conclude.

2 Color decompositions
In this section we explain how to organize the color degrees of freedom in QCD amplitudes, in order to
separate out pieces that have simpler analytic properties. Those pieces have various names in the liter-
ature, such as color-ordered amplitudes, dual amplitudes, primitive amplitudes and partial amplitudes.
(There is a distinction between primitive amplitudes and partial amplitudes at the loop level, but not at
tree level, at least not unless there are multiple fermion lines.)

The basic idea [15, 16, 21, 22] is to reorganize the color degrees of freedom of QCD, in order to
eliminate the Lie algebra structure constants fabc found in the Feynman rules, in favor of the generator
matrices T a in the fundamental representation of SU(Nc). Although the gauge group of QCD is SU(3),
it requires no extra effort to generalize it to SU(Nc), and one can often gain insight by making the
dependence on Nc explicit. Sometimes it is also advantageous (especially computationally) to consider
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Fig. 1: Graphical representation of (a) the identity for eliminating structure constants fabc and (b) the SU(Nc)

Fierz identity for simplifying the resulting traces.

the limit of a large number of colors, Nc →∞.

Gluons in an SU(Nc) gauge theory carry an adjoint color index a = 1, 2, . . . , N2
c − 1, while

quarks and antiquarks carry an Nc or N c index, i, ̄ = 1, 2, . . . , Nc. The generators of SU(Nc) in
the fundamental representation are traceless hermitian Nc ×Nc matrices, (T a) ̄i . For computing color-
ordered helicity amplitudes, it’s conventional to normalize them according to Tr(T aT b) = δab in order
to avoid a proliferation of

√
2’s in the amplitudes.

Each Feynman diagram in QCD contains a factor of (T a) ̄i for each gluon-quark-anti-quark vertex,
a group theory structure constant fabc for each pure gluon three-point vertex, and contracted pairs of
structure constants fabef cde for each pure gluon four-vertex. The structure constants are defined by the
commutator

[T a, T b] = i
√

2 fabc T c . (1)

The internal gluon and quark propagators contract indices together with factors of δab, δ
̄
i . We want to

identify all possible color factors for the diagrams, and sort the contributions into gauge-invariant subsets
with simpler analytic properties than the full amplitude.

To do this, we first eliminate all the structure constants fabc in favor of the generators T a, using

f̃abc ≡ i
√

2fabc = Tr
(
T aT bT c

)
− Tr

(
T aT cT b

)
, (2)

which follows from the definition (1) of the structure constants. This identity is represented graph-
ically in fig. 1(a), in which curly lines are in the adjoint representation and lines with arrows are
in the fundamental representation. After this step, every color factor for a multi-gluon amplitude is
a product of some number of traces. Many traces share T a’s with contracted indices, of the form
Tr
(
. . . T a . . .

)
Tr
(
. . . T a . . .

)
. . . Tr

(
. . .). If external quarks are present, then in addition to the traces

there will be some strings of T a’s terminated by fundamental indices, of the form (T a1 . . . T am) ı̄1i2 . In
order to reduce the number of traces and strings we can apply the SU(Nc) Fierz identity,

(T a) ̄1i1 (T a) ̄2i2 = δ ̄2i1 δ
̄1
i2
− 1

Nc
δ ̄1i1 δ

̄2
i2
, (3)

where the sum over a is implicit. This identity is illustrated graphically in Fig.1(b).

Equation (3) is just the statement that the SU(Nc) generators T a form the complete set of traceless
hermitian Nc × Nc matrices. The −1/Nc term implements the tracelessness condition. (To see this,
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Fig. 2: Graphical illustration of reducing the color factor for a five-gluon Feynman diagram to a single color trace

contract both sides of Eq. (3) with δ i1̄1 .) It is often convenient to consider alsoU(Nc) = SU(Nc)×U(1)
gauge theory. The additional U(1) generator is proportional to the identity matrix,

(T aU(1)) ̄i =
1√
Nc

δ ̄i ; (4)

when this generator is included in the sum over a in Eq. (3), the corresponding U(Nc) result is Eq. (3)
without the −1/Nc term. The auxiliary U(1) gauge field is often referred to as a photon. It is colorless,
commuting with SU(Nc), with vanishing structure constants faU(1)bc = 0 for all b, c. Therefore it does
not couple directly to gluons, although quarks carry charge under it. Real photon amplitudes can be
obtained using this generator, after replacing factors of the strong coupling g with the QED coupling√

2e.

The color algebra can easily be carried out graphically [23], as illustrated in Fig. 2. Starting with
any given Feynman diagram, one interprets it as just the color factor for the full diagram, after expanding
the four-gluon vertices into two three-gluon vertices. Then one makes the two substitutions, Eqs. (2) and
(3), which are represented diagrammatically in Fig. 1. In Fig. 2 we use these steps to simplify a sample
diagram for five-gluon scattering at tree level. Inserting the rule Fig. 1(a) in the three vertices leads to
23 = 8 terms, of which two are shown in the first line. The SU(Nc) Fierz identity takes the traces of
products of three T a’s, and systematically combines them into a single trace, Tr

(
T a1T a2T a3T a4T a5

)
,

plus all possible permutations, as shown in the second line of the figure. Notice that the −1/Nc term in
Eq. (3) and Fig. 1(b) does not contribute here, because the photon does not couple to gluons; that is,
fabI = 0 when I is the U(1) generator. (The −1/Nc term only has to be retained when a gluon can
couple to a fermion line at both ends.)

From Fig. 2 it is clear that any tree diagram for n-gluon scattering can be reduced to a sum of
“single trace” terms, in which the generators T ai corresponding to the external gluons have different
cyclic orderings. The color decomposition of the the n-gluon tree amplitude [21] is,

Atree
n ({ki, λi, ai}) = gn−2

∑

σ∈Sn/Zn
Tr(T aσ(1) . . . T aσ(n)) Atree

n (σ(1λ1), . . . , σ(nλn)). (5)

Here g is the gauge coupling (g2/(4π) = αs), ki, λi are the gluon momenta and helicities, and
Atree
n (1λ1 , . . . , nλn) are the partial amplitudes, which contain all the kinematic information. Sn is the set

of all permutations of n objects, while Zn is the subset of cyclic permutations, which preserves the trace;
one sums over the set Sn/Zn in order to sweep out all cyclically-inequivalent orderings in the trace. We
write the helicity label for each particle, λi = ±, as a superscript.
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The real work is in calculating the independent partial amplitudesAtree
n . However, they are simpler

than the full amplitude because they are color-ordered: they only receive contributions from diagrams
with a particular cyclic ordering of the gluons. This feature reduces the number of singularities they can
contain. Tree amplitudes contain factorization poles, when a single intermediate state goes on its mass
shell in the middle of the diagram. The momentum of the intermediate state is the sum of a number of the
external momenta. In the color-ordered partial amplitudes, those momenta must be cyclically adjacent in
order to produce a pole. For example, the five-point partial amplitudes Atree

5 (1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5) can
only have poles in s12, s23, s34, s45, and s51, and not in s13, s24, s35, s41, or s52, where sij ≡ (ki +kj)

2.
Similarly, at the loop level, only the channels made out of sums of cyclically adjacent momenta will have
unitarity cuts (as well as factorization poles). The number of cyclically-adjacent momentum channels
grows much more slowly than the total number of channels, as the number of legs increases. Later
we will use factorization properties to construct tree amplitudes, so defining partial amplitudes with a
minimal number of factorization channels will simplify the construction.

Although we have mainly considered the pure-gluon case, color decompositions can be found for
generic QCD amplitudes. Another simple case is the set of tree amplitudes q̄qgg . . . g with two external
quarks, which can be reduced to single strings of T a matrices,

Atree
n = gn−2

∑

σ∈Sn−2

(T aσ(3) . . . T aσ(n)) ̄1i2 A
tree
n (1λ1q̄ , 2

λ2
q , σ(3λ3), . . . , σ(nλn)), (6)

where numbers without subscripts refer to gluons. Color decompositions for tree amplitudes with more
than two external quarks can be found in Ref. [15].

The same ideas also work at the loop level [24]. For example, at one loop, the same graphical
analysis leads to a color decomposition for pure-gluon amplitudes which contains two types of terms:

– single-trace terms, of the form Nc Tr(T a1 . . . T an) plus permutations, which contain an extra
factor of Nc and dominate for large Nc, and

– double-trace terms, of the form Tr(T a1 . . . T am) Tr(T am+1 . . . T an) plus permutations, whose
contribution to the color-summed cross section is suppressed by at least a factor of 1/N2

c with
respect to the leading-color terms.

Quark loops lead to contributions of the first type, but with an over all factor of the number of light quark
flavors, nf , replacing the factor of Nc.

After we have computed all of the partial amplitudes, the parton model requires us to construct the
squared amplitude, averaged over the colors of the initial-state partons, and summed over the final-state
colors. Using the above color decompositions, and applying Fierz identities again, this color-summed
cross section can be expressed in terms of the partial amplitudes. The color factors that appear can be
computed graphically. Take a single trace structure of the type shown in Fig. 2, and glue the n gluon
lines to a second trace structure from the conjugate amplitude, which may have a relative permutation.
Then apply the Fierz identity in Fig. 1(b) to remove the gluon lines and reduce the resulting “vacuum”
color graph to powers of Nc. (A closed loop for an arrowed line gives a factor of Tr(1) = Nc.)

In this way you can show that the color-summed cross section for n-gluon scattering,

dσtree ∝
N2
c−1∑

ai=1

|Atree
n ({ki, ai})|2 , (7)

takes the form,

dσtree ∝ Nn
c

{ ∑

σ∈Sn/Zn

∣∣∣Atree
n (σ(1), σ(2), . . . , σ(n))

∣∣∣
2

+O(1/N2
c )

}
. (8)
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In other words, the leading-color contributions come from gluing together two trace structures with no
relative permutation, which gives rise to a planar vacuum color graph. Any relative permutation leads
to a nonplanar graph, and its evaluation results in at least two fewer powers of Nc. Of course these
subleading-color terms can be worked out straightforwardly as well. Another way of stating Eq. (8)
is that, up to 1/N2

c -suppressed terms, the differential cross section can be written as a sum of positive
terms, each of which has a definite color flow. This description is important for the development of
parton showers, which exploit the pattern of radiating additional soft gluons from these color-ordered
pieces of the cross section.

3 The spinor helicity formalism
3.1 Spinor variables
Now we turn from color to spin. That is, we ask how to organize the spin quantum numbers of the external
states in order to simplify the calculation. The answer is that the helicity basis is a very convenient one
for most purposes. In high-energy collider processes, almost all fermions are ultra-relativistic, behaving
as if they were massless. Massless fermions that interact through gauge interactions have a conserved
helicity, which we can exploit by computing in the helicity basis. Although vector particles like photons
and gluons do not have a conserved helicity, it turns out that the most helicity-violating processes one can
imagine are zero at tree level (due to a hidden supersymmetry that relates boson and fermion amplitudes).
Also, the nonzero amplitudes are ordered in complexity by how much helicity violation they have; we
will see that the so-called maximally helicity violating (MHV) amplitudes are the simplest, the next-to-
MHV are the next simplest, and so on.

A related question is, what are the right kinematic variables for scattering amplitudes? It is tra-
ditional to use the four-momenta, kµi , and especially their Lorentz-invariant products, sij = (ki + kj)

2,
as the basic kinematic variables. However, all the particles in the Standard Model — except the Higgs
boson — have spin, and for particles with spin, there is a better choice of variables. Just as we rewrote the
color factors for SU(Nc) adjoint states (fabc) in terms of those associated with the smaller fundamental
representation of SU(Nc) (T a), we should now consider trading the Lorentz vectors kµi for kinematic
quantities that transform under a smaller representation of the Lorentz group.

The only available smaller representation of the Lorentz group is the spinor representation, which
for massless vectors can be two-dimensional (Weyl spinors). So we trade the four-momentum kµi for a
pair of spinors,

kµi ⇒ u+(ki) ≡ |i+〉 ≡ λαi , u−(ki) ≡ |i−〉 ≡ λα̇i . (9)

Here u+(ki) = 1
2(1 + γ5)u(ki) is a right-handed spinor written in four-component Dirac notation, and

λαi is its two-component version, α = 1, 2. Similarly, u−(ki) = 1
2(1 − γ5)u(ki) is a left-handed spinor

in Dirac notation, and λ̃αi is the two-component version, α̇ = 1, 2. We also give the “ket” notation that is
often used. The massless Dirac equation is satisfied by these spinors,

6kiu±(ki) = 6ki|i±〉 = 0. (10)

There are also negative-energy solutions v±(ki), but for k2
i = 0 they are not distinct from u∓(ki). The

undotted and dotted spinor indices correspond to two different spinor representations of the Lorentz
group.

We would like to build some Lorentz-invariant quantities out of the spinors, which we can do using
the antisymmetric tensors εαβ and εα̇β̇ . We define the spinor products,

〈i j〉 ≡ εαβ(λi)α(λj)β = ū−(ki)u+(kj), (11)

[i j] ≡ εα̇β̇(λ̃i)α̇(λj)β̇ = ū+(ki)u−(kj), (12)

6
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where we give both the two- and four-component versions.

Recall the form of the positive energy projector for m = 0:

u+(ki)ū+(ki) = |i+〉 〈i+| = 1
2(1 + γ5) 6ki 1

2(1− γ5). (13)

In two-component notation, this relation becomes, using the explicit form of the Pauli matrices,

(λi)α(λ̃i)α̇ = kµi (σµ)αα̇ = (6ki)αα̇ =

(
kti + kzi kxi − ikyi
kxi + ikyi kti − kzi

)
. (14)

Note that the determinant of this 2 × 2 matrix vanishes, det(6ki) = k2
i = 0, which is consistent with its

factorization into a column vector (λi)α times a row vector (λ̃i)α̇.

Also note that if the momentum vector kµi is real, then complex conjugation is equivalent to trans-
posing the matrix 6ki, which via Eq. (14) corresponds to exchanging the left- and right-handed spinors,
(λ̃i)α̇ ↔ (λi)α. In other words, for real momenta, a chirality flip of all spinors (which could be induced
by a parity transformation) is the same as complex conjugating the spinor products,

[i j] = 〈i j〉∗ . (15)

If we contract Eq. (14) with (σν)α̇α, we find that we can reconstruct the four-momenta kµi from
the spinors,

〈i+|γµ|i+〉 ≡ (λ̃i)α̇(σµ)α̇α(λi)α = 2kµi . (16)

Using the Fierz identity for Pauli matrices,

(σµ)αα̇(σµ)β̇β = 2δβαδ
β̇
α̇ , (17)

we can similarly reconstruct the momentum invariants from the spinor products,

2ki · kj =
1

2
(λ̃i)α̇(σµ)α̇α(λi)α(λ̃j)β̇(σµ)β̇β(λj)β = (λi)α(λj)

α(λ̃j)α̇(λ̃i)
α̇ , (18)

or
sij = 〈i j〉 [j i] . (19)

For real momenta, we can combine Eqs. (15) and (19) to see that the spinor products are complex
square roots of the momentum-invariants,

〈i j〉 =
√
sije

iφij , [i j] =
√
sije

−iφij , (20)

where φij is some phase. We will see later that this complex square-root property allows the spinor
products to capture perfectly the singularities of amplitudes as two massless momenta become parallel
(collinear). This fact is one way of understanding why helicity amplitudes can be so compact when
written in terms of spinor products.

We collect here some useful spinor product identities:

anti-symmetry : 〈i j〉 = −〈j i〉 , [i j] = − [j i] , 〈i i〉 = [i i] = 0, (21)

squaring : 〈i j〉 [j i] = sij , (22)

momentum conservation :

n∑

j=1

〈i j〉 [j k] = 0 (23)

Schouten : 〈i j〉 〈k l〉 − 〈i k〉 〈j l〉 = 〈i l〉 〈k j〉 . (24)
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Fig. 3: The one Feynman diagram for e−e+ → qq̄. Particles are labeled with L and R subscripts for left- and
right-handed particles. We also give in black the numerical, all-outgoing labeling convention.

Note also that the massless Dirac equation in two-component notation follows from the antisymmetry of
the spinor products:

(6ki)α̇α(λi)
α = (λ̃i)α̇ 〈i i〉 = 0. (25)

Finally, for numerical evaluation it is useful to have explicit representations of the spinors,

(λi)α =

(√
kti + kzi
kxi +ikyi√
kti+k

z
i

)
, (λ̃i)α̇ =

(√
kti + kzi
kxi −ik

y
i√

kti+k
z
i

)
, (26)

which satisfy Eqs. (14) and (15).

We would like to have the same formalism describe amplitudes that are related by crossing sym-
metry, i.e., by moving various particles between the initial and final states. In order to keep everything
on a crossing-symmetric footing, we define the momenta as if they were all outgoing, so that initial-state
momenta are assigned the negative of their physical momenta. Then momentum conservation for an
n-point process takes the crossing symmetric form,

n∑

i=1

kµi = 0. (27)

We also label the helicity as if the particle were outgoing. For outgoing particles this label is the physical
helicity, but for incoming particles it is the opposite. Because of this, whenever we look at a physical pole
of an amplitude, and assign helicities to an intermediate on-shell particle, the helicity assignment will
always be opposite for amplitudes appearing on two sides of a factorization pole. The same consideration
will apply to particles crossing a cut, at the loop level.

3.2 A simple four-point example
Let’s illustrate spinor-helicity methods with the simplest scattering amplitude of all, the one for electron-
positron annihilation into a massless fermion pair, say a pair of quarks, for which the single Feynman
diagram is shown in Fig. 3. This amplitude is related by crossing symmetry to the amplitude for electron-
quark scattering at the core of deep inelastic scattering, and by time reversal symmetry to the annihilation
of a quark and anti-quark into a pair of leptons, i.e. the Drell-Yan reaction.

We take all the external states to be helicity eigenstates, choosing first to consider,

e−L (−k1)e+
R(−k2)→ qR(k3)q̄L(k4) . (28)

Note that we have assigned momenta −k1 and −k2 to the incoming states, so that momentum conserva-
tion takes the crossing-symmetric form,

k1 + k2 + k3 + k4 = 0. (29)

8
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In the all-outgoing helicity labeling convention, the incoming left-handed electron is labeled as if it
were an outgoing right-handed positron (positive-helicity ē), and similarly for the incoming right-handed
positron (labeled as a negative-helicity e). We label the amplitude with numerals i standing for the
momenta ki, subscripts to identify the type of particle (if it is not a gluon), and superscripts to indicate
the helicity. Thus the amplitude for reaction (28) is denoted by

Atree
4 (1+

ē , 2
−
e , 3

+
q , 4

−
q̄ ) ≡ A4 . (30)

As discussed above, we first strip off the color factors, as well as any other coupling factors. In this
case the color factor is a trivial Kronecker δ that equates the quark colors. We define the color-stripped
amplitude A4 by

A4 = (
√

2e)2QeQqδ
ı̄4
i3
A4 , (31)

where e is the electromagnetic coupling, obeying e2/(4π) = αQED, and Qe and Qq are the electron
and quark charges. The factor of (

√
2e)2 arises because it is convenient to normalize the color-stripped

amplitudes so that there are no
√

2 factors for QCD. In this normalization, the substitution g →
√

2e is
required in the prefactor for each QED coupling. A corresponding (1/

√
2)2 goes into the Feynman rule

for A4.

The usual Feynman rules for the diagram in Fig. 3 give

A4 =
i

2s12
v−(k2)γµu−(k1)u+(k3)γµv+(k4)

=
i

2s12
(σµ)αα̇(λ2)α(λ̃1)α̇(σµ)β̇β(λ̃3)β̇(λ4)β , (32)

where we have switched to two-component notation in the second line. Now we apply the Fierz identity
for Pauli matrices, Eq. (17), obtaining

A4 =
i

s12
(λ2)α(λ̃1)α̇(λ4)α(λ̃3)α̇ = i

〈2 4〉 [1 3]

s12
, (33)

after using the definitions (11) and (12) of the spinor products 〈i j〉 and [i j].

According to Eqs. (22) and (15), the spinor products are square-roots of the momentum invariants,
up to a phase. Because s24 = s13 for massless four-point kinematics, we can rewrite Eq. (33) as

A4 = i
〈2 4〉 [1 3]

s12
= eiφ

s13

s12
= −e

iφ

2
(1− cos θ) , (34)

where φ is some phase angle, and θ is the center-of-mass scattering angle. From this formula, we can
check the helicity suppression of the amplitude in the forward scattering limit, A4 → 0 as θ → 0.
The amplitude vanishes in this limit because of angular-momentum conservation: the initial angular
momentum along the e−L direction is (−1

2)− 1
2 = −1, while the final angular momentum is 1

2 − (−1
2) =

+1. At θ = π, the spins line up and there is no suppression.

The result (33) for A4 is in a mixed representation, containing both the “holomorphic” (right-
handed) spinor product 〈2 4〉 and the “anti-holomorphic” (left-handed) spinor product [1 3]. However,
we can multiply top and bottom by 〈1 3〉, and use the squaring relation (22), s13 = s24 and momentum
conservation (23) to rewrite it as,

A4 = i
〈2 4〉 [1 3]

s12
= i
〈2 4〉 [1 3] 〈1 3〉
〈1 2〉 [2 1] 〈1 3〉 = −i 〈2 4〉 [2 4] 〈2 4〉

〈1 2〉 [2 4] 〈4 3〉 = i
〈2 4〉2
〈1 2〉 〈3 4〉 . (35)

The latter form only involves the spinors 〈i j〉. On the other hand, the same identities also allow us to
write it in an anti-holomorphic form. In summary, we have

Atree
4 (1+

ē , 2
−
e , 3

+
q , 4

−
q̄ ) = i

〈2 4〉2
〈1 2〉 〈3 4〉 = i

[1 3]2

[1 2] [3 4]
. (36)
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It turns out that Atree
4 (1+

ē , 2
−
e , 3

+
q , 4

−
q̄ ) is the first in an infinite series of “maximally helicity violating”

(MHV) amplitudes, containing these four fermions along with (n − 4) additional positive-helicity glu-
ons or photons. All of these MHV amplitudes, containing exactly two negative-helicity particles, are
holomorphic. (We will compute one of them in a little while.) But Atree

4 (1+
ē , 2

−
e , 3

+
q , 4

−
q̄ ) is also the first

in an infinite series of MHV amplitudes, containing these four fermions along with (n − 4) additional
negative-helicity gluons or photons. All the MHV amplitudes are anti-holomorphic; in fact, they are the
parity conjugates of the MHV amplitudes. As a four-point amplitude, eq. (36) has a dual life, belonging
to both the MHV and the MHV series. The same phenomenon occurs for other classes of amplitudes,
including the n-gluon MHV amplitudes (the Parke-Taylor amplitudes [5]) and their MHV conjugate
amplitudes, which we will encounter shortly.

So far we have only computed one helicity configuration for e+e− → qq̄. There are 16 config-
urations in all. However, the helicity of massless fermions is conserved when they interact with gauge
fields, or in the all-outgoing labeling, the positron’s helicity must be the opposite of the electron’s, and
the antiquark’s helicity must be the opposite of the quark’s. So there are only 2 × 2 = 4 nonvanishing
helicity configurations. They are all related by parity (P) and by charge conjugation (C) acting on one of
the fermion lines. For example, C acting on the electron line exchanges labels 1 and 2, which can also
be interpreted as flipping the helicities of particles 1 and 2, taking us from eq. (36) to

Atree
4 (1−ē , 2

+
e , 3

+
q , 4

−
q̄ ) = −i 〈1 4〉2

〈1 2〉 〈3 4〉 . (37)

Parity flips all helicities and conjugates all spinors, 〈i j〉 → [i j], taking us from eq. (36) to

Atree
4 (1−ē , 2

+
e , 3

−
q , 4

+
q̄ ) = i

[2 4]2

[1 2] [3 4]
. (38)

Combining the two operations leads to

Atree
4 (1+

ē , 2
−
e , 3

−
q , 4

+
q̄ ) = −i [1 4]2

[1 2] [3 4]
. (39)

Of course Eqs. (37), (38) and (39) can all be rewritten in the conjugate variables as well.

The scattering probability, or differential cross section, is proportional to the square of the ampli-
tude. Squaring a single helicity amplitude would give the cross section for fully polarized incoming and
outgoing particles. In QCD applications, we rarely have access to the spin states of the partons. Hadron
beams are usually unpolarized, so the incoming quarks and gluons are as well. The outgoing quarks
and gluons shower and fragment to produce jets of hadrons, wiping out almost all traces of final-state
parton helicities. In other words, we need to construct the unpolarized cross section, by summing over all
possible helicity configurations. (The different helicity configurations do not interfere with each other.)
For our e+e− → qq̄ example, we need to sum over the four nonvanishing helicity configurations, after
squaring the tree-level helicity amplitudes. The result, omitting the overall coupling and flux factors, is

dσ

d cos θ
∝
∑

hel.

|A4|2 = 2

{∣∣∣∣
〈2 4〉2
〈1 2〉 〈3 4〉

∣∣∣∣
2

+

∣∣∣∣
〈1 4〉2
〈1 2〉 〈3 4〉

∣∣∣∣
2}

= 2
s2

24 + s2
14

s2
12

=
1

2

[
(1− cos θ)2 + (1 + cos θ)2

]

= 1 + cos2 θ. (40)

We used the fact that the amplitudes related by parity are equal up to a phase, in order to only exhibit
two of the four nonzero helicity configurations explicitly.
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For a simple process like e+e− → qq̄, helicity amplitudes are overkill. It would be much faster
to use the textbook method of computing the unpolarized differential cross section directly, by squaring
the amplitude for generic external spinors and using Casimir’s trick of inserting the positive energy
projector for the product of two spinors, summed over spin states. The problem with this method is that
the computational effort scales very poorly when there a large number of external legs n. The number
of Feynman diagrams grows like n!, so the number of separate interferences between diagrams in the
squared amplitude goes like (n!)2. That is why all modern methods for high-multiplicity scattering
processes compute amplitudes, not cross sections, for some basis of external polarization states. For
massless particles, this is usually the helicity basis. After computing numerical values for the helicity
amplitudes at a given phase-space point, the cross section is constructed from the helicity sum.

3.3 Helicity formalism for massless vectors
Next we consider external massless vector particles, i.e. gluons or photons. Spinor-helicity techniques
began in the early 1980s with the recognition [2] that polarization vectors for massless vector particles
with definite helicity could be constructed from a pair of massless spinors, as follows:

(ε+
i )µ = ε+

µ (ki, q) =
〈q−| γµ |i−〉√

2 〈q i〉
, (ε−i )µ = ε−µ (ki, q) = −〈q

+| γµ |i+〉√
2 [q i]

, (41)

(6ε+
i )αα̇ = 6ε+

αα̇(ki, q) =
√

2
λαq λ̃

α̇
i

〈q i〉 , ( 6ε−i )αα̇ = 6ε−αα̇(ki, q) = −
√

2
λ̃α̇q λ

α
i

[q i]
, (42)

where we have also given the 2 × 2 matrix version, from contracting with a σ matrix and using the
Fierz identity (17). Here kµi is the gluon momentum and qµ is an additional massless vector called the
reference momentum, whose associated two-component left- and right-handed spinors are λ̃α̇q and λαq .
Using the massless Dirac equation,

6ki|i±〉 = 0 = 6q|q±〉 , (43)

we see that the polarization vectors (41) obey the required transversality with respect the gluon momen-
tum,

ε±i · ki = 0 . (44)

As a bonus, it also is transverse with respect to q: ε±i · q = 0.

The second form (42) for the polarization vector shows that 6ε+
i produces a state with helicity +1,

because it contains two complex conjugate spinors with momentum ki in the numerator and denominator.
These two spinors pick up opposite spin-1/2 phases under an azimuthal rotation about the ki axis,

λ̃α̇i → eiφ/2λ̃α̇i , λαi → e−iφ/2λαi , (45)

so the ratio transforms like helicity +1,

6ε+
i ∝

λ̃α̇i
λαi
→ eiφ 6ε+

i . (46)

There is a freedom to choose different reference vectors qi for each of the external states i. This
freedom is the residual on-shell gauge invariance, that amplitudes should be unchanged when the polar-
ization vector is shifted by an amount proportional to the momentum. A judicious choice of the reference
vectors can greatly simplify a Feynman diagram computation by causing many diagrams to vanish. How-
ever, we won’t be doing many Feynman diagram computations, just the one in the next subsection, of
a five-point amplitude. In this case, there are only two diagrams, one of which we will make vanish
through a choice of q.
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Fig. 4: The two Feynman diagrams for e−e+ → qgq̄

3.4 A five-point amplitude
In this subsection we compute one of the next simplest helicity amplitudes, the one for producing a
gluon along with the quark-antiquark pair in e+e− annihilation. This amplitude contributes to three-jet
production in e+e− annihilation, and to the next-to-leading order corrections to deep inelastic scattering
and to Drell-Yan production, in the crossed channels.

We compute the amplitude for the helicity configuration

e−L (−k1)e+
R(−k2)→ qR(k3)gR(k4)q̄L(k5) , (47)

namely
Atree

5 (1+
ē , 2

−
e , 3

+
q , 4

+, 5−q̄ ) ≡ A5 . (48)

Again we strip off the color and charge factors, defining

A5 = (
√

2e)2g QeQq(T
a4)ı̄5i3 A5 , (49)

where A5 is constructed from the two Feynman diagrams in Fig. 4.

Recall that in the evaluation of the four-point amplitude (33), after applying the Fierz identity
related to the photon propagator, the two external fermions with the same (outgoing) helicity had their
spinors contracted together, generating factors of 〈2 4〉 and [1 3]. In the two diagrams in Fig. 4, the same
thing happens for the quark or anti-quark that does not have a gluon emitted off it, generating a factor of
〈2 5〉 in the first diagram and [1 3] in the second one. On the other spinor string, we have to insert a factor
of the off-shell fermion propagator and the gluon polarization vector, giving

A5 = −i 〈2 5〉
s12

〈1+| (6k3+ 6k4) 6ε+
4 |3−〉√

2s34

+ i
[1 3]

s12

〈2−| ( 6k4+ 6k5) 6ε+
4 |5+〉√

2s45

. (50)

Inserting the formula (42) for the gluon polarization vector, we obtain

A5 = −i 〈2 5〉
s12

〈1+| (6k3+ 6k4) |q+〉 [4 3]

s34 〈q 4〉 + i
[1 3]

s12

〈2−| ( 6k4+ 6k5) |4−〉 〈q 5〉
s45 〈q 4〉 . (51)

Now we choose the reference momentum q = k5 in order to make the second graph vanish,

A5 = −i 〈2 5〉
s12

〈1+| ( 6k3+ 6k4) |5+〉 [4 3]

s34 〈5 4〉 = −i 〈2 5〉 [1 2] 〈2 5〉 [4 3]

〈1 2〉 [2 1] 〈3 4〉 [4 3] 〈4 5〉 = i
〈2 5〉2

〈1 2〉 〈3 4〉 〈4 5〉 , (52)

where we used momentum conservation (23) and a couple of other spinor-product identities to simplify
the answer to its final holomorphic form,

A5(1+
ē , 2

−
e , 3

+
q , 4

+, 5−q̄ ) = i
〈2 5〉2

〈1 2〉 〈3 4〉 〈4 5〉 . (53)
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Fig. 5: Factorization of a QCD amplitude when a soft gluon s is emitted between the hard partons a and b.

(As an exercise in spinor-product identities, verify Eq. (53) for other choices of q.)

Next we will study the behavior of A5 in various kinematic limits, which will give us insight into
the generic singular behavior of QCD amplitudes.

4 Soft and collinear factorization
In this section, we use the five-point amplitude (53) to verify some universal limiting behavior of QCD
amplitudes. In the next section, we will use this universal behavior to derive recursion relations for
general tree amplitudes.

4.1 Soft gluon limit
First consider the limit that the gluon momentum k4 in Eq. (53) becomes soft, i.e. scales uniformly to
zero, k4 → 0. In this limit, we can factorize the amplitude into a divergent piece that depends on the
energy and angle of the emitted gluon, and a second piece which is the amplitude omitting that gluon:

A5(1+
ē , 2

−
e , 3

+
q , 4

+, 5−q̄ ) = i
〈2 5〉2

〈1 2〉 〈3 4〉 〈4 5〉 =
〈3 5〉

〈3 4〉 〈4 5〉 × i
〈2 5〉2
〈1 2〉 〈3 5〉

→ S(3, 4+, 5)×A4(1+
ē , 2

−
e , 3

+
q , 5

−
q̄ ) . (54)

The soft factor (or eikonal factor) is given more generally by,

S(a, s+, b) =
〈a b〉

〈a s〉 〈s b〉 , S(a, s−, b) = − [a b]

[a s] [s b]
, (55)

where s labels the soft gluon, and a and b label the two hard partons that are adjacent to it in the color
ordering.

Although we have only inspected the soft limit of one amplitude, the more general result is,

Atree
n (1, 2, . . . , a, s±, b, . . . , n)

ks→0−−−→ S(a, s±, b)×Atree
n−1(1, 2, . . . , a, b, . . . , n) . (56)

This factorization is depicted in Fig. 5.1 The (n − 1)-point amplitude on the right-hand side is that
obtained by just deleting the soft-gluon s in the n-point amplitude. The soft factor is universal: it does
not depend on whether a and b are quarks or gluons; it does not care about their helicity; and it does not
even depend on the magnitude of their momenta, just their angular direction (as one can see by rescaling
the spinor λa in Eq. (55)). The spin independence arises because soft emission is long-wavelength, and
intrinsically classical. Because of this, we can pretend that the external partons a and b are scalars, and

1Actually, the case we inspected in eq. (54) was somewhat special in that we didn’t need to use the fact that ks → 0 in order
to put the five-point amplitude into the limiting form of eq. (56); normally one would have to do so.
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Fig. 6: Factorization of a QCD amplitude when two color-adjacent partons a and b become collinear

compute the soft factor simply from two Feynman diagrams, from emission off legs a and b. We can use
the scalar QED vertex in the numerator, while the (singular) soft limit of the adjacent internal propagator
generates the denominator:

S(a, s+, b) = −
√

2ε+
s (q) · ka

2ka · ks
+

√
2ε+
s (q) · kb

2kb · ks
=

〈a q〉
〈s q〉 〈a s〉 −

〈b q〉
〈s q〉 〈b s〉 =

〈a b〉
〈a s〉 〈s b〉 , (57)

using the Schouten identity (24) in the last step.

4.2 Collinear limits
Next consider the limit of the e+e− → qgq̄ amplitude (53) as the quark momentum k3 ≡ ka and the
gluon momentum k4 ≡ kb become parallel, or collinear. This limit is singular because the intermediate
momentum kP ≡ ka + kb is going on shell in the collinear limit:

k2
P = 2ka · kb

a‖b−−−→ 0. (58)

We also need to specify the relative longitudinal momentum fractions carried by partons a and b,

ka ≈ zkP , kb ≈ (1− z)kP , (59)

where 0 < z < 1. This relation implies, thanks to eq. (26), that the spinors obey similar relations with
square roots:

λa ≈
√
z λP , λb ≈

√
1− z λP , (60)

λ̃a ≈
√
z λ̃P , λ̃b ≈

√
1− z λ̃P , (61)

Inserting Eq. (60) into Eq. (53), we find that

A5(1+
ē , 2

−
e , 3

+
q , 4

+, 5−q̄ ) = i
〈2 5〉2

〈1 2〉 〈3 4〉 〈4 5〉 ≈ 1√
1− z 〈3 4〉 × i

〈2 5〉2
〈1 2〉 〈P 5〉

→ Split−(3+
q , 4

+
g ; z)×A4(1+

ē , 2
−
e , P

+
q , 5

−
q̄ ) .

(62)

Here we have introduced the splitting amplitude Split−λP (aλa , bλb ; z), which governs the general
collinear factorization of tree amplitudes depicted in fig. 6,

Atree
n (. . . , aλa , bλb , . . .)

a‖b−−−→
∑

λP=±
Split−λP (aλa , bλb ; z)Atree

n−1(. . . , P λP , . . .) . (63)
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In contrast to the soft factor, the splitting amplitude depends on whether a and b are quarks or gluons,
and on their helicity. It also includes a sum over the helicity λP of the intermediate parton P . (Note
that the labeling of λP is reversed between the (n− 1)-point tree amplitude and the splitting amplitude,
because we apply the all-outgoing helicity convention to the splitting amplitude as well.) The (n − 1)-
point tree amplitude on the right-hand side of Eq. (63) is found by merging the two partons, according
to the possible splittings in QCD: g → gg, g → qq̄, q̄ → q̄g and (in this case) q → qg. For the splitting
amplitude Split−(a+

q , b
+
g ; z) entering Eq. (62), quark helicity conservation implies that only one of the

two intermediate helicities survives. For intermediate gluons, both signs of λP can appear in general. As
in the case of the soft limit, the four-point amplitude A4 is found by relabeling Eq. (36).

One can also extract from Eq. (53) the splitting amplitude for the case that the (anti)quark and
gluon have the opposite helicity, by taking the collinear limit 4 ‖ 5. The two results can be summarized
as:

Split−(q+, g+) =
1√

1− z 〈q g〉 , Split−(q+, g−) = − z√
1− z [q g]

, (64)

Split−(g+, q̄+) =
1√
z 〈g q̄〉 , Split−(g−, q̄+) = − 1− z√

z [g q̄]
. (65)

where the other cases (including some not shown, with opposite quark helicity) are related by parity or
charge conjugation.

Collinear singularities in the initial state give rise to the DGLAP evolution equations for parton
distributions. In fact, the splitting amplitudes are essentially the square root of the (polarized) Altarelli-
Parisi splitting probabilities which are the kernels of the DGLAP equations. That is, the z dependence
of the splitting amplitudes, after squaring and summing over the helicities λa, λb and λP , reproduces the
splitting probabilities. For example, one can reconstruct the correct z-dependence of the q → qg splitting
probabilities Pqq(z) using Eq. (64), squaring and summing over the gluon helicity:

Pqq(z) ∝
(

1√
1− z

)2

+

(
z√

1− z

)2

=
1 + z2

1− z , (66)

while Pgq(z) is given by exchanging z ↔ 1 − z. Equation (66) omits the δ(1 − z) term from virtual
gluon emission, but its coefficient can be inferred from quark number conservation.

4.3 The Parke-Taylor amplitudes
In the all-outgoing helicity convention, one can show that the pure-gluon amplitudes for which all the
gluon helicities are the same, or at most one is different from the rest, vanish for any n ≥ 4:

Atree
n (1±, 2+, . . . , n+) = 0. (67)

(Cyclic symmetry allows us to move a single negative-helicity gluon to leg 1.) This result can be proven
directly by noticing that the tree amplitude contains n different polarization vectors, contracted together
with at most n − 2 momenta (because there are at most n − 2 cubic vertices in any Feynman graph,
each of which is linear in the momentum). Therefore every term in every tree amplitude contains at least
one polarization vector contraction of the form εi · εj . Inspecting the form of the polarization vectors in
Eq. (41), we see that like-helicity contractions, ε+

i (qi) · ε+
j (qj), vanish if qi = qj , while opposite helicity

contractions, ε−i (qi) ·ε+
j (qj), vanish if qi = kj or qj = ki. To show that Atree

n (1+, 2+, . . . , n+) vanishes,
we can just choose all reference momenta to be the same, qi = q. To show that Atree

n (1−, 2+, . . . , n+)
vanishes, we can choose qi = k1 for i > 1 and q1 = k2, for example. It is also possible to prove Eq. (67)
using the fact that tree-level n-gluon amplitudes are the same in QCD as in a supersymmetric theory [4],
and so they obey Ward identities for supersymmetric scattering amplitudes [3].
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The remarkable simplicity of gauge-theory scattering amplitudes is encapsulated by the Parke-
Taylor [5] amplitudes for the MHV n-gluon amplitudes, in which exactly two gluons, j and l, have
opposite helicity from the rest:

AMHV
jl ≡ Atree

n (1+, . . . , j−, . . . , l−, . . . , n+) = i
〈j l〉4

〈1 2〉 · · · 〈n 1〉 . (68)

One of the reasons these amplitudes are so simple is that they have no multi-particle poles — no
factors of 1/(km + km+1 + · · ·+ kp)

2 ≡ 1/P 2 for p > m+ 1. Why is that? A multi-particle pole would
correspond to factorizing the scattering process into two subprocesses, each with at least four gluons,

Atree
n (. . .)

P 2→0−−−→ An−k+1(. . . , P λP , . . .)
i

P 2
Ak+1(. . . , (−P )−λP , . . .) , 3 ≤ k ≤ n− 3, (69)

In the MHV case, there are two negative-helicity gluons among the arguments “. . .” of the two tree
amplitudes on the right-hand side of eq. (69), plus one more for either P or (−P ) (but not both). That’s
three negative-helicity gluons to be distributed among two tree amplitudes. However, Eq. (67) says that
both trees need at least two negative helicities to be nonvanishing, for a minimum of four required.
Hence the multiparticle poles must all vanish, due to insufficiently many negative helicities. As we’ll see
in Section 6, similar arguments control the structure of loop amplitudes as well.

We have found that the MHV amplitudes have no multi-particle factorization poles, consistent
with Eq. (68). Their principal singularities are the soft and collinear limits. It’s easy to check that the
soft limit (56) is satisfied by the MHV amplitudes in Eq. (68). It’s also simple to verify that the collinear
behavior (63) is obeyed, and to extract the g → gg splitting amplitudes,

Split−(a+, b+) =
1√

z(1− z) 〈a b〉
, Split+(a−, b+) =

z2

√
z(1− z) 〈a b〉

,

Split+(a+, b−) =
z2

√
z(1− z) 〈a b〉

, Split+(a+, b+) = 0 , (70)

plus their parity conjugates. The last relation in Eq. (70) must hold for consistency, because otherwise
the collinear limit of an MHV amplitude (which has no multi-particle poles) could generate a next-to-
MHV amplitude with three negative helicities (which generically does have such poles). It’s a useful
exercise to reconstruct the unpolarized g → gg splitting probabilities Pgg(z) from Eq. (70) by squaring
and summing over all helicity configurations.

A closely related series of MHV amplitudes to the pure-glue ones are those with a single external
qq̄ pair and (n − 2) gluons. In this case helicity conservation along the fermion line forces either the
quark or antiquark to have negative helicity. Using charge conjugation, we can pick it to be the antiquark.
Referring to the color decomposition (6), the partial amplitudes for which all gluons have the same
helicity vanish identically,

Atree
n (1−q̄ , 2

+
q , 3

+, 4+, . . . , n+) = 0, (71)

while the MHV ones with exactly one negative-helicity gluon (leg i) take the simple form,

Atree
n (1−q̄ , 2

+
q , 3

+, . . . , i−, . . . , n+) = i
〈1 i〉3 〈2 i〉
〈1 2〉 · · · 〈n 1〉 . (72)

It’s easy to see that the absence of multi-particle poles in eq. (68), whether for intermediate gluons
or quarks, again follows from the vanishing relations (67) and (71), and simple counting of negative
helicities. However, the relation between the pure-glue MHV amplitudes Atree,MHV

1i in Eq. (68) and
the quark-glue ones (72) is much closer than that, as they differ only by a factor of 〈2 i〉 / 〈1 i〉. These
relations follow from supersymmetry Ward identities [3, 4, 15, 16].
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Fig. 7: In gauge theory, an angular-momentum mismatch lessens the singular behavior from 1/p2 to 1/
√
p2, and

introduces an azimuthally-dependent phase, both of which are captured by the spinor products.

4.4 Spinor magic
All of the splitting amplitudes contain denominator factors of either 〈a b〉 or its parity conjugate [a b].
From Eq. (20), we see that the collinear singularity is proportional to the square root of the momentum
invariant that is vanishing, times a phase. This phase varies as the two collinear partons are rotated in
the azimuthal direction about their common axis. Both the square root and the phase behavior follow
from angular momentum conservation in the collinear limit. Figure 7 illustrates the difference between
scalar φ3 theory and gauge theory. In scalar φ3 theory, no spin angular momentum is carried by either the
external scalars or the intermediate one. Thus there is no violation of angular-momentum conservation
along the collinear axis. Related to this, the three-vertex shown carries no momentum dependence, and
the collinear pole is determined solely by the scalar propagator to be ∼ 1/sab in the limit that legs a and
b become parallel.

In contrast, in every collinear limit in massless gauge theory, angular momentum conservation is
violated by at least one unit. In the pure-glue case shown in Fig. 7, the intermediate physical gluon must
be transverse and have helicity ±1, but this value is never equal to the sum of the two external helicities:
±1 ± 1 = ±2 or 0. The helicity mismatch forces the presence of orbital angular momentum, which
comes from the momentum dependence in the gauge-theory three-vertex. It suppresses the amplitude in
the collinear limit, from 1/sab to 1/

√
sab, similarly to the vanishing of A4 in Eq. (34) in the limit θ → 0.

The helicity mismatch also generates the azimuthally-dependent phase. The sign of the mismatch, by
±1 unit, is correlated with whether the splitting amplitude contains 1/ 〈a b〉 or 1/ [a b], since these spinor
products acquire opposite phases under an azimuthal rotation.

In summary, the spinor products are the perfect variables for capturing the collinear behavior of
massless gauge theory amplitudes, simply due to angular-momentum considerations. Because collinear
singularities dictate many of the denominator factors that should appear in the analytic representations
of amplitudes, we can now understand more physically why the spinor product representation can lead
to such compact analytic results.

4.5 Complex momenta, spinor products and three-point kinematics
There is another reason the spinor products are essential for modern amplitude methods, and that is
to make sense out of massless three-point scattering. If we use only momentum invariants, then the
three-point kinematics, defined by

kµ1 + kµ2 + kµ3 = 0, k2
1 = k2

2 = k2
3 = 0, (73)

is pathological. For example, s12 = (k1 + k2)2 = k2
3 = 0, and similarly every momentum invariant

sij vanishes. If the momenta are real, then eq. (20) implies that all the spinor products vanish as well,
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〈i j〉 = [i j] = 0. It is easy to see that for real momenta the only solutions to Eq. (73) consist of strictly
parallel four-vectors, which is another way of seeing why all dot products and spinor products must
vanish.

However, if the momenta are complex, there is a loophole: The conjugation relation (15), [i j] =
〈i j〉∗, does not hold, although the relation (19), sij = 〈i j〉 [j i], is still true. Therefore we can have some
of the spinor products be nonzero, even though all the momentum invariants vanish, sij = 0. There are
two chirally conjugate solutions:

1. λ̃1 ∝ λ̃2 ∝ λ̃3 ⇒ all [i j] = 0 while all 〈i j〉 6= 0.
2. λ1 ∝ λ2 ∝ λ3 ⇒ all 〈i j〉 = 0 while all [i j] 6= 0.

The proportionality of the two-component spinors causes the corresponding spinor products to vanish.
There are no continuous variables associated with the three-point process, so one should think of the
kinematical region as consisting of just two points, which are related to each other by parity.

For the first choice of kinematics, MHV three-point amplitudes such as

Atree
3 (1−, 2−, 3+) = i

〈1 2〉4
〈1 2〉 〈2 3〉 〈3 1〉 (74)

make sense and are nonvanishing. MHV three-point amplitudes such as

Atree
3 (1+, 2+, 3−) = −i [1 2]4

[1 2] [2 3] [3 1]
(75)

are nonvanishing for the second type of kinematics. When the MHV three-point amplitudes are nonvan-
ishing, the MHV ones vanish, and vice versa.

It’s important to note that the splitting amplitudes defined in section 4.2 correspond to approximate
three-point kinematics with real momenta, whereas the three-point amplitudes (74) and (75) correspond
to exact three-point kinematics with complex momenta. They are similar notions, but not exactly the
same thing.

5 The BCFW recursion relation for tree amplitudes
5.1 General formula
The idea behind the derivation of the BCFW recursion relation [25] is that tree-level amplitudes are plas-
tic, or continuously deformable, analytic functions of the scattering momenta. Therefore, it should be
possible to reconstruct amplitudes for generic scattering kinematics from their behavior in singular lim-
iting kinematics. In these singular regions, amplitudes split, or factorize, into two causally disconnected
amplitudes with fewer legs, connected by a single intermediate state, which can propagate an arbitrary
distance because it is on its mass shell.

Multi-leg amplitudes depend on many variables, and multi-variable complex analysis can be tricky.
However, BCFW considered a family of on-shell tree amplitudes, An(z), depending on a single complex
parameter z which shifts some of the momenta. (We drop the “tree” superscript here for convenience.)
This family explores enough of the singular kinematical configurations to allow recursion relations to be
derived for the original amplitude at z = 0, An = An(0). There have since been many generalizations of
this approach, leading to different types of recursion relations. The BCFW momentum shift only affects
two of the momenta, say legs n and 1. The shift can be defined using the spinor variables as,

λ̃n → ˆ̃
λn = λ̃n − zλ̃1 , λn → λn ,

λ1 → λ̂1 = λ1 + zλn , λ̃1 → λ̃1 , (76)
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where hatted variables indicate variables after the shift. This particular shift is called the [n, 1〉 shift,
because it only affects the spinor products involving the left-handed spinor λ̃n and the right-handed
spinor λ1.

The shift (76) can also be expressed in terms of momentum variables,

ˆ6k1(z) = (λ1 + zλn) λ̃1 = λ1λ̃1 + zλnλ̃1 ,

ˆ6kn(z) = λn (λ̃n − zλ̃1) = λnλ̃n − zλnλ̃1 , (77)

which makes clear that momentum conservation holds for any value of z, because

k̂µ1 (z) + k̂µn(z) = kµ1 + kµn . (78)

Also, since both ˆ6k1(z) and ˆ6kn(z) in Eq. (77) can be factorized as 2× 2 matrices into row vectors times
column vectors, their determinants vanish. Then, according to the discussion around Eq. (14), they
remain on shell,

k̂2
1(z) = k̂2

n(z) = 0. (79)

We can give a physical picture of the direction of the momentum shift by first writing k̂µ1 (z) = kµ1 +zvµ,
k̂µn(z) = kµ1 − zvµ. Requiring Eq. (79) for all z implies that v · k1 = v · kn = v2 = 0. If we go to a
Lorentz frame in which the spatial components of k1 and kn are both along the z direction, then we see
that vµ must be a null vector in the space-like transverse (x, y) plane. This is only possible if vµ is a
complex vector. It’s easy to see that vµ = 1

2 〈1+| γµ |n+〉 satisfies the required orthogonality relations.

The function An(z) depends meromorphically on z. If it behaves well enough at infinity, then we
can use Cauchy’s theorem to relate its behavior at z = 0 (the original amplitude) to its residues at finite
values of z (the factorization singularities). If An(z)→ 0 as z →∞, then we have,

0 =
1

2πi

∮

C
dz
An(z)

z
= An(0) +

∑

k

Res

[
An(z)

z

]∣∣∣∣
z=zk

, (80)

where C is the circle at infinity, and zk are the locations of the factorization singularities in the z
plane. (See fig. 8.) These poles occur when the amplitude factorizes into a subprocess with momenta
(k̂1, k2, . . . , kk,−K̂1,k), where K̂1,k(zk) = k̂1(zk) + k2 + · · · + kk must be on shell. This information
lets us write a simple equation for zk,

0 = K̂2
1,k(zk) = (k̂1(zk) + k2 + · · ·+ kk)

2 = (zkλnλ̃1 +K1,k)
2 = zk

〈
n−
∣∣ 6K1,k

∣∣1−
〉

+K2
1,k , (81)

where K1,k = k1 + k2 + · · ·+ kk. The solution to eq. (81) is

zk = −
K2

1,k

〈n−| 6K1,k |1−〉
. (82)

We also have to compute the residue of A(z)/z at z = zk. To do that we use Eq. (69), which also
holds for three-point factorizations in complex kinematics. The singular factor in the denominator that
produces the residue is

zP 2(z) = zK̂2
1,k(z) ≈ zk

〈
n−
∣∣ 6K1,k

∣∣1−
〉

(z − zk) ≈ −K2
1,k (z − zk). (83)

Thus after taking the residue it contributes a factor of the corresponding scalar propagator, i/K2
1,k, eval-

uated for the original unshifted kinematics where it is nonsingular.

Solving Eq. (80) for An(0) then gives the final BCFW formula [25],

An(1, 2, . . . , n) =
∑

h=±

n−2∑

k=2

Ak+1(1̂, 2, . . . , k,−K̂−h1,k )
i

K2
1,k

An−k+1(K̂h
1,k, k + 1, k + 2, . . . , n− 1, n̂),

(84)
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Fig. 8: Illustration of how Cauchy’s theorem leads to the BCFW recursion relation. The magenta dot represents
the residue at the origin; the blue dots the residues at zk. In the recursion relation, the red lines carry complex,
shifted momenta.

Fig. 9: Large z dependence of a generic Feynman diagram, for the [n−, 1+〉 momentum shift. Only the red gluons
carry the large momentum.

where the hat in the kth term indicates that the shifted momentum is to be evaluated for z = zk, and
h = ± labels the sign of the helicity of the intermediate state carrying (complex) momentum K̂1,k. The
sum is over the n − 3 ordered partitions of the n momenta into two sets, with at least a three-point
amplitude on the left (k ≥ 2) and also on the right (k ≤ n − 2). The recursion relation is depicted in
Fig. 8.

In order to finish the proof of Eq. (84), we need to show that An(z) vanishes as z → ∞. We will
do so for the case that leg n has negative helicity and leg 1 has positive helicity, the so-called [−,+〉
case. This case can be demonstrated using Feynman diagrams [25]. The cases [+,+〉 and [−,−〉 also
vanish at infinity, but the proof is slightly more involved. The case [+,−〉 diverges at infinity, so it should
not be used as the basis for a recursion relation. Consider the large z behavior of the generic Feynman
diagram shown in Fig. 9. Only the red gluons carry the large momentum proportional to zvµ. The red
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propagators contribute factors of the form

1

K̂2
1,k(z)

=
1

K2
1,k + z 〈n−| 6K1,k |1−〉

∼ 1

z
, as z →∞. (85)

Yang-Mills vertices are (at worst) linear in the momentum, so they contribute a factor of z per vertex.
There is one more vertex than propagator, so the amplitude scales like z+1 before we take into account
the external polarization vectors. For the [−,+〉 case, they scale like,

6ε−n (q) ∝ λnλ̃q
[n q]

∝ 1

z
, 6ε+

1 (q) ∝ λ̃1λq
〈1 q〉 ∝

1

z
. (86)

The two factors of 1/z, combined with the factor of z from the internal part of the diagram, mean that
every Feynman diagram falls off like 1/z, so An(∞) = 0 for the [−,+〉 shift.

It is easy to see that flipping either helicity in Eq. (86) results in a polarization vector that scales
like z instead of 1/z, invalidating the argument based on Feynman diagrams. However, it is possible to
show [26] using the background field method that the [+,+〉 and [−,−〉 cases are actually just as well
behaved as the [−,+〉 case, also falling off like 1/z. In contrast, the [+,−〉 case does diverge like z3, as
suggested by the above diagrammatic argument.

5.2 Application to MHV
Next we apply the BCFW recursion relation to prove the form of the Parke-Taylor amplitudes (68),
inductively in the number of legs n. For convenience, we will use cyclicity to put one of the two negative
helicities in the nth position,

AMHV
jn ≡ Atree

n (1+, 2+, . . . , j−, . . . , (n− 1)+, n−) = i
〈j n〉4

〈1 2〉 · · · 〈n 1〉 . (87)

First we note that the middle terms in the sum over k in Eq. (84), with 3 ≤ k ≤ n− 3 all vanish. That’s
because they correspond to the multi-particle pole factorizations considered in Eq. (69), with at least a
four-point amplitude on each side of the factorization pole, and vanish according to the discussion below
Eq. (69), by counting negative helicities.

The case k = n − 2 also vanishes. If j = n − 1, then it vanishes because Ak+1 can have at
most one negative helicity. If j < n − 1, then we must have h = + so that Ak+1 is non-vanishing,
and then the three-point amplitude An−k+1 is of type (+,+,−). This amplitude, given in Eq. (75), can
be nonvanishing when the three right-handed spinors λi (i = K,n − 1, n) are proportional (the second
choice of three-point kinematics). However, we have shifted the left-handed spinor λ̃n, not the right-
handed one, and it is easy to check that the three-point configuration we arrived at is the one for which
three left-handed spinors λ̃i are proportional. For this choice An−k+1 vanishes.

The only nonvanishing contribution is from k = 2. We assume j > 2 for simplicity. Since we
have shifted λ1, the three right-handed spinors λi (i = K, 1, 2) must be proportional, which allows the
following three-point amplitude to be non-vanishing:

A3(1̂+, 2+,−K̂−) = −i
[
1̂ 2
]4

[1̂ 2][2 (−K̂)][(−K̂) 1̂]
= +i

[1 2]3

[2 K̂][K̂ 1]
, (88)

where K̂ = K̂1,2. We removed the hats on 1 in the second step, since λ̃1 is not shifted. There are also
two factors of i from reversing the sign of K̂ in the spinor products.

The other amplitude appearing in the k = 2 term in Eq. (84) is evaluated using induction on n and
Eq. (87):

An−1(K̂+, 3+, . . . , j−, . . . , n−) = i
〈j n̂〉4

〈K̂ 3〉 〈3 4〉 · · · 〈n− 1, n̂〉 〈n̂ K̂〉
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= i
〈j n〉4

〈K̂ 3〉 〈3 4〉 · · · 〈n− 1, n〉 〈n K̂〉
, (89)

where we can again remove the hats on n because λn is unshifted.

Combining the three factors in the k = 2 term in the BCFW formula (Eq. (84)) gives

AMHV
jn = −i 〈j n〉4

〈K̂ 3〉 〈3 4〉 · · · 〈n− 1, n〉 〈n K̂〉
1

s12

[1 2]3

[2 K̂][K̂ 1]
. (90)

One can combine the K̂-containing factors into 〈n K̂〉[K̂ 2] and 〈3 K̂〉[K̂ 1]. At this point, we would
normally need the value of zk to proceed. From Eq. (82), it is

z2 = − s12

〈n−| (1 + 2) |1−〉 = −〈1 2〉 [2 1]

〈n 2〉 [2 1]
= −〈1 2〉
〈n 2〉 . (91)

However, the evaluation of the K̂-containing strings in this case, where

ˆ6K = ˆ6K1,2(z2) =6k1+ 6k2 + z2λnλ̃1 , (92)

does not actually require the value of z2:

〈n K̂〉[K̂ 2] =
〈
n−
∣∣ (1 + 2)

∣∣2−
〉

+ z2 〈nn〉 [1 2] = 〈n 1〉 [1 2] ,

〈3 K̂〉[K̂ 1] =
〈
3−
∣∣ (1 + 2)

∣∣1−
〉

+ z2 〈3n〉 [1 1] = 〈3 2〉 [2 1] . (93)

Inserting these results into Eq. (90) gives

AMHV
jn = −i 〈j n〉4[1 2]3

(〈1 2〉 [2 1])([1 2] 〈2 3〉)(〈n 1〉 [1 2]) 〈3 4〉 · · · 〈n− 1, n〉

= i
〈j n〉4

〈1 2〉 〈2 3〉 · · · 〈n− 1, n〉 〈n 1〉 , (94)

completing the induction and proving the Parke-Taylor formula.

5.3 An NMHV application
Now we know all the MHV pure-gluon tree amplitudes with exactly two negative helicities, and by
parity, all the MHV amplitudes with exactly two positive helicities. The first gluonic amplitude which is
not zero or one of these is encountered for six gluons, with three negative and three positive helicities, the
next-to-MHV case. In fact, there are three inequivalent cases (up to cyclic permutations and reflection
symmetries):

A6(1+, 2+, 3+, 4−, 5−, 6−), A6(1+, 2+, 3−, 4+, 5−, 6−), A6(1+, 2−, 3+, 4−, 5+, 6−). (95)

One can use a simple group theory relation known as the U(1) decoupling identity to rewrite the third
configuration in terms of the first two [15, 16].

Here we will give a final illustration of the BCFW recursion relation by computing the first of the
amplitudes in Eq. (95). (The other two are almost as simple to compute.) We again use the [n−, 1+〉
shift, for n = 6. The k = 3 term vanishes in this case because Ak+1 = A4(1̂+, 2+, 3+,−K̂−h1,3 ) = 0.
The k = 2 and k = 4 terms are related by the following parity symmetry:

1〉 ↔ 6], 2〉 ↔ 5], 3〉 ↔ 4], 4〉 ↔ 3], 5〉 ↔ 2], 6〉 ↔ 1]. (96)
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For the k = 2 term, using z2 from Eq. (91), we have the kinematical identities (where again K̂ = K̂1,2),

ˆ6K = 6k1+ 6k2 −
〈1 2〉
〈6 2〉 |6〉[1| , (97)

|1̂] = |1] , (98)

|6̂] = |6] +
〈1 2〉
〈6 2〉 |1] . (99)

The k = 2 BCFW diagram is

T2 ≡ A3(1̂+, 2+,−K̂−1,2)
i

s12
A5(K̂+

1,2, 3
+, 4−, 5−, 6̂−)

=
i

s12

[
1̂ 2
]3

[2 K̂][K̂ 1]

[K̂ 3]3

[3 4] [4 5]
[
5 6̂
]

[6̂ K̂]

=
i

s12

[1 2]3

([2 K̂]〈K̂ 6〉)(〈6 K̂〉[K̂ 1])

(〈6 K̂〉[K̂ 3])3

[3 4] [4 5]
[
5 6̂
]

([6̂ K̂]〈K̂ 6〉)
. (100)

Using Eqs. (97) and (99), we can derive the identities,

〈6 K̂〉
[
K̂ a

]
=

〈
6−
∣∣ (1 + 2)

∣∣a−
〉
,

[
5 6̂
]

= [5 6] +
〈1 2〉 [5 1]

〈6 2〉 =
〈2−| (6 + 1) |5−〉

〈6 2〉 ,

[
6̂ K̂

]
〈K̂ 6〉 =

〈
6+
∣∣ (1 + 2)

∣∣6+
〉

+ s12 = s612 , (101)

where s612 = (k6 + k1 + k2)2. Inserting these identities into Eq. (100) for T2, we have

T2 = i
〈6−| (1 + 2) |3−〉3

〈6 1〉 〈1 2〉 [3 4] [4 5] s612 〈2−| (6 + 1) |5−〉 . (102)

We can use the parity symmetry (96) to obtain the k = 4 term. The final result for the six-point
NMHV amplitude is,

A6(1+, 2+, 3+, 4−, 5−, 6−) = i
〈6−| (1 + 2) |3−〉3

〈6 1〉 〈1 2〉 [3 4] [4 5] s612 〈2−| (6 + 1) |5−〉

+ i
〈4−| (5 + 6) |1−〉3

〈2 3〉 〈3 4〉 [5 6] [6 1] s561 〈2−| (6 + 1) |5−〉 . (103)

It’s worth comparing the analytic form of this result to that found in the 1980’s [22],

A6(1+, 2+, 3+, 4−, 5−, 6−) = i
([1 2] 〈4 5〉 〈6−| (1 + 2) |3−〉)2

s61s12s34s45s612
(104)

+ i
([2 3] 〈5 6〉 〈4−| (2 + 3) |1−〉)2

s23s34s56s61s561

+ i
s123 [1 2] [2 3] 〈4 5〉 〈5 6〉 〈6−| (1 + 2) |3−〉 〈4−| (2 + 3) |1−〉

s12s23s34s45s56s61
.

Although the new form has only one fewer term, it represents the physical singularities in a cleaner
fashion. For example, in the collinear limit 3 ‖ 4, Eq. (103) makes manifest the 1/ 〈3 4〉 and 1/ [3 4]
singularities, which correspond to the two different intermediate gluon helicities that contribute in this
collinear channel, as the six-point NMHV amplitude factorizes on both the MHV and MHV five-point
amplitudes, A5(1+, 2+, P±, 5−, 6−). On the other hand, each term of Eq. (104) behaves like the product
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of these two singularities, since 1/s3,4 = −1/(〈3 4〉 [3 4]). Hence there are large cancellations between
the three terms in this channel. Such cancellations can lead to large losses in numerical precision due
to round-off errors, especially in NLO calculations which typically evaluate tree amplitudes repeatedly
close to the collinear poles.

On the other hand, eq. (103) contains a spurious singularity that Eq. (104) does not, as
〈2−| (6 + 1) |5−〉 → 0. This can happen, for example, whenever k6 + k1 is a linear combination of
k2 and k5. (In the collision 2 + 5→ 6 + 1 + 3 + 4, such a configuration is reached if the vectors k6 + k1

and k3 + k4 have no component transverse to the beam axis defined by k2 and k5; that is, if k6 + k1

is a linear combintation of k2 and k5.) It’s called a spurious singularity because the amplitude should
evaluate to a finite number there, but individual terms blow up. However, these singularities tend to have
milder consequences, as long as they appear only to the first power, as they do here. That’s because
the amplitude is not particularly large in this region, so in the evaluation of an integral containing it by
importance-sampling, it is rare to come close enough to the surface where 〈2−| (6 + 1) |5−〉 vanishes that
round-off error is a problem. Different choices of BCFW shifts lead to different spurious singularities,
so one can always check the value of 〈2−| (6 + 1) |5−〉 and use a different shift if it is too small.

In general, the BCFW recursion relation leads to very compact analytic representations for tree
amplitudes. The relative simplicity with respect to previous analytic approaches becomes much more
striking for seven or more external legs. A closely related set of recursion relations for N = 4 super-
Yang-Mills theory [27] have been solved in closed form for an arbitrary number of external legs [28].
These solutions can also be used to compute efficiently a wide variety of QCD tree amplitudes [29].
There are other ways to compute tree amplitudes, in particular, off-shell recursion relations based on the
Dyson-Schwinger equations, such as the Berends-Giele recursion relations [6]. At very high multiplic-
ities, these can be numerically even more efficient than the BCFW recursion relations. Nevertheless,
the idea behind the BCFW recursion relations, that amplitudes can be reconstructed from their analytic
behavior, carries over to the loop level, as we’ll now discuss.

6 Generalized unitarity and loop amplitudes
Ordinary unitarity is merely the statement that the scattering matrix S is a unitary matrix, S†S = 1.
Usually we split off a forward-scattering part by writing S = 1 + iT , leading to (1− iT †)(1 + iT ) = 1,
or

DiscT = T †T , (105)

where Disc(x) = 2 Im(x) is the discontinuity across a branch cut. This equation can be expanded order-
by-order in perturbation theory. For example, the four- and five-gluon scattering amplitudes in QCD
have the expansions,

T4 = g2T
(0)
4 + g4T

(1)
4 + g6T

(2)
4 + . . . , (106)

T5 = g3T
(0)
5 + g5T

(1)
5 + g7T

(2)
5 + . . . , (107)

where T (L)
n is the L-loop n-gluon amplitude. Inserting these expansions into Eq. (105) for the four-point

amplitude and collecting the coefficients at order g2, g4 and g6, respectively, we find that,

DiscT
(0)
4 = 0 , (108)

DiscT
(1)
4 = T

(0) †
4 T

(0)
4 , (109)

DiscT
(2)
4 = T

(0) †
4 T

(1)
4 + T

(1) †
4 T

(0)
4 + T

(0) †
5 T

(0)
5 . (110)

On the right-hand sides of these equations, there is an implicit discrete sum over the types and helicities
of the intermediate states which lie between the two T matrices, and there is a continuous integral over
the intermediate-state phase space.
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The first equation (generalized to more legs) simply states that tree amplitudes have no branch
cuts. The second equation, Eq. (109), states that the discontinuities of one-loop amplitudes are given
by the products of tree amplitudes, where the intermediate state always consists of two particles that are
re-scattering, the so-called two-particle cuts. The third equation, Eq. (110), states that the discontinuities
of two-loop amplitudes are of two types: two-particle cuts where one of the two amplitudes is a one-loop
amplitude rather than a tree amplitude, and three-particle cuts involving the product of higher-multiplicity
tree amplitudes.

Although there is a lot of information in Eqs. (109) and (110), there are two more observations
which lead to even more powerful conclusions. The first observation is that the above unitarity relations
are derived assuming real momenta (and positive energies) for both the external states and the interme-
diate states appearing on the right-hand sides. The intermediate momenta on the right-hand sides can be
thought of as particular values of the loop momenta implicit on the left-hand side, momenta that are real
and on the particles’ mass shell. Given what we have learned so far about the utility of complex mo-
menta at tree level, it is natural to try to solve the on-shell conditions for the loop momenta for complex
momenta as well. Such solutions are referred to as generalized unitarity [30].

Secondly, because unitarity is being applied perturbatively, we might as well make use of other the
properties of perturbation theory, namely that a Feynman diagram expansion exists. We don’t need to use
the actual values of the Feynman diagrams, but it is very useful to know that such an expansion exists,
because we can represent the loop amplitudes as a linear combination of a basic set of Feynman integrals,
called master integrals, multiplied by coefficient functions. The idea of the unitarity method [9] is that the
information from (generalized) unitarity cuts can be compared with the cuts of this linear combination, in
order to determine all of the coefficient functions. If all possible integral coefficients can be determined,
then the amplitude itself is completely determined. This approach avoids the need to use dispersion
relations to reconstruct full amplitudes from their branch cuts, which is often necessary in the absence of
a perturbative expansion.

In the rest of this section, we will sketch a useful hierarchical procedure for determining one-loop
amplitudes from generalized unitarity. This method, and variations of it, have been implemented both
analytically, and even more powerfully, numerically. The latter implementation has made it possible to
compute efficiently one-loop QCD amplitudes of very high multiplicity, far beyond what was imaginable
a decade ago. The availability of such loop amplitudes has broken a bottleneck in NLO QCD computa-
tions, particularly for processes at hadron colliders such as the LHC, leading to the “NLO revolution.”

6.1 The plastic loop integrand
Before carrying out the loop integration, the integrand of a one-loop amplitude depends on the external
momenta k1, k2, . . . , kn and on the loop momentum `. Just as at tree level, this function can develop
poles as the various momenta are continued analytically. Suppose we hold the external momenta fixed
and just vary `. One kind of singularity that can appear is the ordinary two-particle cut represented by
Eq. (109). Let’s first generalize this equation to the case of an n-gluon one-loop amplitude, and specialize
it to the case of a color-ordered loop amplitudeA1−loop

n — the coefficient of the leading-color single-trace
color structure discussed in Section 2.

Consider the discontinuity in the channel s12...m = (k1 + k2 + · · · km)2, which is illustrated in
Fig. 10. The unitarity relation that generalizes Eq. (109) is

Disc|s12...mA1−loop
n (k1, k2, . . . , kn) (111)

= (2π)2
∑

hi

∫
dD`1
(2π)D

δ(+)(`µ1 )Atree
m+2(−`−h11 , k1, . . . , km, `

h2
2 ) ,

× δ(+)(−`µ2 )Atree
n−m+2(−`−h22 , km+1, . . . , kn, `

h1
1 ) (112)

where `2 = `1 − (k1 + k2 + · · · km). The delta function δ(+)(kµ) = Θ(k0)δ(k2) enforces that the

25

A BRIEF INTRODUCTION TO MODERN AMPLITUDE METHODS

55



An

1−loop

2

1

m+1 m+1

n n

m m

2

1

1

2

Fig. 10: Ordinary unitarity viewed as a factorization property of the loop integrand
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Fig. 11: A quadruple cut pinches the loop integrand down into the product of four tree amplitudes, connected
cyclicly around the loop.

intermediate states are on shell with real momenta and positive energies. The sum over intermediate
helicities may also include different particle types, for example, both gluons and quarks in an n-gluon
QCD loop amplitude. The two delta functions reduce the loop momentum integral to an integral over the
two-body phase space for on-shell momenta `1 and −`2.

Another way of stating Eq. (111), which allows us to generalize it, is that for a given set of external
momenta ki, there is a family of loop momenta ` ≡ `1 that solve the dual constraints `21 = `22 = 0. On
this solution set the loop integrand, which can be pictured as the annular blob shown in fig. 10, factorizes
into the product of two tree amplitudes,

i

`21
Atree
m+2(−`−h11 , k1, . . . , km, `

h2
2 )

i

`22
Atree
n−m+2(−`−h22 , km+1, . . . , kn, `

h1
1 ) , (113)

in much the same way that a tree amplitude factorizes on a single multi-particle pole, Eq. (69).

In this picture of the plastic loop integrand, we need not impose positivity of the energies of
the intermediate states, and the loop momenta can even be complex. This opens up the possibility
of more general solutions, where more than two lines are cut. If we think of the loop momentum `µ

as four-dimensional, then for generic kinematics we can cut not just two lines, but up to four. The
reason the maximum is four is that each cut imposes a new equation of the form (` − Ki)

2 = 0 for
some combination of external momenta Ki. At four cuts the number of equations equals the number of
unknowns — the four components of `µ. Hence a fifth cut condition is impossible to satisfy (unless the
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n

+ Rn + O(  )

Fig. 12: Decomposition of a generic one-loop amplitude A1−loop
n into basis integrals multiplied by kinematical

coefficients: scalar box integrals with coefficients di, scalar triangles with coefficients ci, scalar bubbles with
coefficients bi, and the rational part Rn. The dots between the external lines indicate that one or several external
legs may emanate from each vertex. If there are massive internal propagators, then tadpole integrals also appear;
in the massless case such integrals vanish.

kinematical configuration of the external momenta is an exceptional, degenerate one). Figure 11 shows
how the quadruple cut of a generic one-loop integrand squeezes it at four locations, so that it becomes
proportional to the product of four tree amplitudes. Two of the momenta of each tree amplitude are
identified with the cut loop momenta, denoted by `1, `2, `3, `4, and the rest are drawn from the external
momenta for the loop amplitude.

6.2 The quadruple cut
The quadruple cut [31] is special because the solution set is discrete. Let’s write the four cut loop
momenta as

`1, `2 = `1 −K1, `3 = `2 −K2, `4 = `3 −K3 = `1 +K4, (114)

where the Ki are sums of the n external momenta satisfying K1 +K2 +K3 +K4 = 0. From Fig. 11 it
is clear that the Ki correspond to some partition of the n cyclicly ordered momenta into four contiguous
sets. We can rewrite the four quadratic cut conditions,

`21 = `22 = `23 = `24 = 0, (115)

by taking the differences `2i − `2i+1 = 0, so that three of the conditions are linear,

`21 = 0, 2`1 ·K1 = K2
1 , 2`2 ·K2 = K2

2 , 2`3 ·K3 = K2
3 . (116)

Because the three linear equations can be solved uniquely, we generically expect two discrete solutions
for the loop momentum `1, denoted by `±1 . The other three quantities `±i are uniquely determined from
`±1 by shifting it by the appropriate external momenta.

What information does the quadruple cut reveal? To answer this question, we rely on a systematic
decomposition of the one-loop amplitude for an arbitrary n-point amplitude, which is shown diagra-
matically in Fig. 12. The amplitude can be written as a linear combination of certain basis integrals,
multiplied by kinematical coefficients. The only loop integrals that appear are scalar integrals with four,
three and two internal propagator lines, which are usually called box, triangle and bubble integrals, re-
spectively. They are given in dimensional regularization, with D = 4− 2ε, by

I4(K1,K2,K3,K4) = µ2ε

∫
d4−2ε`

(2π)4−2ε

1

`2(`−K1)2(`−K1 −K2)2(`+K4)2
, (117)
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I3(K1,K2,K3) = µ2ε

∫
d4−2ε`

(2π)4−2ε

1

`2(`−K1)2(`+K3)2
, (118)

I2(K) = µ2ε

∫
d4−2ε`

(2π)4−2ε

1

`2(`−K)2
, (119)

where the Ki are the sums of external momenta emanating from each corner. The coefficients of these
integrals are di, ci and bi, where i labels all the inequivalent partitions of the n external momenta into
4, 3 and 2 sets, respectively. There is also a rational part Rn, which cannot be detected using cuts with
four-dimensional cut loop momenta; we will return to this contribution later.

The decomposition in Fig. 12 holds in dimensional regularization, assuming that the external
(observable) momenta are all four-dimensional, and neglecting the O(ε) terms. It also requires the
internal propagators to be massless; if there are internal propagators for massive particles, then tadpole
(one-propagator) integrals will also appear. The result seems remarkable at first sight, since one-loop
Feynman diagrams with five or more external legs attached to the loop will generically appear, and these
diagrams would seem likely to generate pentagon and higher-point integrals. However, it is possible to
systematically reduce such integrals down to linear combinations of scalar boxes, triangles and bubble
integrals [32–34].

The reduction formulas are fairly technical, but here we don’t need to know the formulas, just
that the reduction is possible. Heuristically, the reason it is possible to avoid all pentagon and higher-
point integrals is the same reason that there is no quintuple cut when the loop momentum is in four
dimensions: there are more equations in the quintuple cut conditions than there are unknowns. If the
scalar pentagon integral had a quintuple cut, it would not be possible to reduce it to a linear combination
of box integrals. The fact that it can be done [32] exploits the four-dimensionality of the loop momenta to
expand the loop momenta in terms of the four linearly-independent external momenta of the pentagon. In
dimensional regularization, the relation of ref. [32] has a correction term [33], and the pentagon integral
has a quintuple cut, because the loop momentum is no longer four-dimensional. However, because of the
“small” volume of the extra −2ε dimensions, the correction term is of O(ε).

Returning to the quadruple cut, we see that a second special feature of it is that only one of the
integrals in Fig. 12 survives, for a given quadruple cut. First of all, none of the triangle and bubble
terms can survive, because those integrals do not even have four propagators available to cut. There are
many possible box integrals, for a large number of external legs, but each one box integral is in one-
to-one correspondence with a different quadruple cut; both are characterized by the same partition of
the cyclicly ordered momenta into four contiguous sets, or clusters. The momentum flowing out at each
corner of the box must match the cluster momenta {K1,K2,K3,K4} corresponding to the quadruple
cut (115). For this solution, we match the left- and right-hand sides of Fig. 12 and learn [31] that

di =
1

2

(
d+
i + d−i

)
, (120)

where the superscripts ± refer to the two discrete solutions for the loop momentum, and d±i are given by
the product of four tree amplitudes, as in Fig. 11,

d±i = Atree
1 (`±)Atree

2 (`±)Atree
3 (`±)Atree

4 (`±), (121)

with
Atree
i (`) ≡ Atree(−`i, k(i)

1 , . . . , k(i)
pi , `i+1). (122)

Here the external momenta {k(i)
1 , . . . , k

(i)
pi } are the elements of the cluster Ki, i = 1, 2, 3, 4,

i.e.
∑pi

j=1 k
(i)
j = Ki. These formulae are very easy to evaluate, either analytically or in an automated

code, and they are numerically very stable.
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Fig. 13: The left quadruple cut shows that the coefficients of all four-mass box integrals vanish for one-loop
NMHV amplitudes. The right quadruple cut shows that the three-mass box coefficients do not vanish.

It’s possible to solve analytically for the cut loop momenta `±i for generic values of the Ki; the
solution involves a quadratic formula [31]. If just one of the external legs is massless, however, say
K1 = k1, then the solutions collapse to a simpler form [35, 36]:

(`±1 )µ =
〈1∓| /K2 /K3 /K4γ

µ |1±〉
2 〈1∓| /K2 /K4 |1±〉

, (`±2 )µ = −〈1
∓| γµ /K2 /K3 /K4 |1±〉
2 〈1∓| /K2 /K4 |1±〉

,

(`±3 )µ =
〈1∓| /K2γ

µ /K3 /K4 |1±〉
2 〈1∓| /K2 /K4 |1±〉

, (`±4 )µ = −〈1
∓| /K2 /K3γ

µ /K4 |1±〉
2 〈1∓| /K2 /K4 |1±〉

. (123)

It’s easy to see that Eq. (115) is satisfied by Eq. (123); that is, each of the four vectors (`±i )µ squares to
zero. For example, the evaluation of (`±1 )µ(`±1 )µ proceeds using the Fierz identity and is proportional to
〈1 1〉 = 0. The corresponding algebra for (`±3 )2 involves 〈1∓| /K2 /K2 |1±〉 = K2

2 〈1 1〉 = 0.

We also have to show that momentum conservation is satisfied, namely,

`2 − `3 = K2 , `3 − `4 = K3 , `4 − `1 = K4 . (124)

The first equation is

(`±2 − `±3 )µ = −〈1
∓| {γµ, /K2} /K3 /K4 |1±〉

2 〈1∓| /K2 /K4 |1±〉
= −Kµ

2

〈1∓| (− /k1 − /K2 − /K4) /K4 |1±〉
〈1∓| /K2 /K4 |1±〉

= Kµ
2 , (125)

and the other equations work the same way.

Shortly, we will compute an explicit example of a nontrivial, nonzero coefficient of a box integral
using the quadruple cut. However, it’s worth noting first that many box coefficients for massless QCD
amplitudes vanish identically. In fact, the vanishing of large sets of box coefficients can be established
simply by counting negative helicities. Consider, for example, the one-loop NMHV amplitude in mass-
less QCD whose quadruple cut is shown on the left side of Fig. 13. This quadruple cut can be used to
compute the coefficient of a four-mass box integral. We call it a four-mass box because the momentum
Ki flowing out at each corner is the sum of at least two massless external particle momenta; hence Ki is
a massive four-vector. (In contrast, the right side of Fig. 13 shows a quadruple cut for a three-mass box
integral, because the lower right tree amplitude emits a single external momentum m.)

We denote negative-helicity legs by red lines and an explicit (−) in the figure. The external black
lines are all positive helicity. The upper left tree amplitude in the example has no external negative
helicities. Because tree amplitudes with 0 or 1 negative helicity vanish, according to Eq. (67), the two
internal (cut) lines emanating from this upper left blob must carry negative helicity. On the opposite side
of their respective cuts, they carry positive helicity. If the lower left and upper right tree amplitudes have
one negative external helicity, as shown, then they must each send a negative helicity state toward the
purple blob. This tree amplitude carries the third external negative helicity, but no other negative helicity
emanates from it, so it vanishes, causing the vanishing of the corresponding four-mass box coefficient.
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We gave this argument specifically for the case that all three negative-helicity particles were emit-
ted from different corners of the box. It’s easy to see that the vanishing does not actually depend on
where the negative helicities are located. It’s simply a reflection of the fact that there are four tree am-
plitudes, all with more than three legs, so there must be at least 4× 2 = 8 negative helicities among the
external and cut legs. However, each cut has exactly one negative helicity, and there are three negative
external helicities, for a total of 4 + 3 = 7. Since 7 < 8, the NMHV four-mass box coefficients always
vanish. This counting argument fails as soon as one of the corner momenta becomes massless, as is
appropriate for the three-mass cut shown on the right side of Fig. 13. With the right (second) type of
complex kinematics discussed in Section 4.5, the three-point tree amplitude with helicity configuration
(++−) is nonvanishing, as shown in the figure. Hence this three-mass box coefficient is nonvanishing.
There is a single quadruple-cut helicity configuration and a single choice of sign for the kinematical
configuration (123) that contributes in the particular case shown.

Using the same counting argument, we can see that one-loop MHV amplitudes, with two external
negative helicities, contain neither four-mass, nor three-mass, box integrals. The two-mass box integrals
can be divided into two types, “easy”, in which the two massive corners are diagonally opposite, and
“hard”, in which they are adjacent to each other. One can show that the hard two-mass boxes always
vanish as well. (This proof can be done with the help of a triple cut which puts the two massless corners
into one of the three trees. Then the counting of negative helicities is analogous to the four-mass NMHV
example, except that one needs 3× 2 = 6 negative helicities, and one has only 3 + 2 = 5 available.)

As an aside, consider the one-loop amplitudes of the form A1−loop
n (1±, 2+, . . . , n+), for which the

corresponding tree amplitudes vanished according to Eq. (67). A similar counting exercise shows that
they have no cuts at all: no quadruple, triple, or ordinary two-particle cuts. They are nonvanishing (at
least in a non-supersymmetric theory like QCD), but they are forced to be purely rational functions of
the external kinematics [37].

6.3 A five-point MHV box example
In the remainder of this section, we will compute one of the box coefficients for the five-gluon QCD
amplitude A1−loop

5 (1−, 2−, 3+, 4+, 5+), the one in which the two negative helicity legs, 1 and 2, are
clustered into a massive leg (as also reviewed in ref. [10]). The quadruple cut for this box coefficient
is shown in Fig. 14. Inspecting the figure, starting with the lower-left tree amplitude, it is clear that
there is a unique assignment of internal helicities. Also, this assignment of helicities forbids quarks (or
scalars) from propagating in the loop; the tree amplitudes for two spin 1/2 fermions (or two scalars) and
two identical helicity gluons vanish (see Eq. (71) for the fermion case). Therefore this box coefficient
receives contributions only from the gluon loop, and is the same in QCD as in gauge theories with
different matter content (such as N = 4 super-Yang-Mills theory).

Now that we have identified which four tree amplitudes are to be multiplied together, the next task
is to determine the cut loop momentum. In particular, let’s work out `4, the loop momentum just before
the massless external leg 4. We can use Eq. (123), but since leg 1 was massless there, we should relabel
the momenta in that equation according to:

`±1 → `±4 , k1 → k4 , K2 → k5 , K3 → k1 + k2 , K4 → k3 . (126)

Then the first equation in (123) becomes,

(`±4 )µ =
〈4∓| 5(1 + 2)3γµ |4±〉

2 〈4∓| 53 |4±〉 = −〈4
∓| 543γµ |4±〉

2 〈4∓| 53 |4±〉 = −〈5
±| 43γµ |4±〉

2 〈5±| 3 |4±〉 . (127)

Which sign should we use? The sign is dictated by the helicity assignments in the three-point amplitudes.
Because the upper-right tree is of type (−−+), and is constructed from right-handed spinors, the three
left-handed spinors should be proportional. In particular, λ̃`4 ∝ λ̃4, which tells us that we should take
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Fig. 14: The quadruple cut for one of the box coefficients for the five-gluon amplitude with helicity configuration
(−−+++).

the lower sign in Eq. (127), so that

`µ4 = (`−4 )µ =
1

2

〈4 5〉
〈3 5〉

〈
3−
∣∣ γµ

∣∣4−
〉
. (128)

Now we can multiply together the four tree amplitudes, and use Eqs. (120) and (121) (with d+
i = 0)

to get for the “(12)” box coefficient,

d(12) =
1

2
Atree

4 (−`+1 , 1−, 2−, `+3 )Atree
3 (−`−3 , 3+, `+4 )Atree

3 (−`−4 , 4+, `−5 )Atree
3 (−`+5 , 5+, `−1 )

=
1

2

〈1 2〉3
〈2 `3〉 〈`3 (−`1)〉 〈(−`1) 1〉

[3 `4]3

[`4 (−`3)] [(−`3) 3]

〈`5 (−`4)〉3
〈4 `5〉 〈(−`4) 4〉

[(−`5) 5]3

[5 `1] [`1 (−`5)]

= −1

2

〈1 2〉3 〈3+| `4`5 |5−〉3
〈2−| `3 |3−〉 〈4−| `4`3`1 |5−〉 〈1−| `1`5 |4+〉 . (129)

To get to the last step in eq. (129), we combined spinor products into longer strings using the replacement
|`i〉[`i| → /̀i, but we did not need to use any other properties of the `i. In the next step it is convenient to
use momentum conservation, i.e. `1 = `4 − k4 − k5, `3 = `4 + k3 and `5 = `4 − k4, as well as `2i = 0,
to replace,

〈
3+
∣∣ `4`5

∣∣5−
〉
→ −

〈
4−
∣∣ `4
∣∣3−
〉
〈4 5〉 , (130)〈

2−
∣∣ `3
∣∣3−
〉
→

〈
2−
∣∣ `4
∣∣3−
〉
, (131)〈

4−
∣∣ `4`3`1

∣∣5−
〉
→

〈
4−
∣∣ `43(`4 − k4)

∣∣5−
〉

= −
〈
4−
∣∣ `4
∣∣3−
〉
〈3 4〉 [4 5] , (132)〈

1−
∣∣ `1`5

∣∣4+
〉
→ −〈1 5〉

〈
4−
∣∣ `4
∣∣5−
〉
. (133)

In Eq. (132) we also used the fact that 〈3 `4〉 = 0, given that both `4 and k3 emanate from a (++−)
three-point amplitude.

Making these replacements in Eq. (129), and then Fierzing in `µ4 ∝ 〈3−| γµ |4−〉 from Eq. (128),
gives,

d(12) =
1

2

〈1 2〉3 〈4−| `4 |3−〉2 [4 5]3

〈2−| `4 |3−〉 〈3 4〉 [4 5] 〈1 5〉 〈4−| `4 |5−〉

= −1

2

〈1 2〉3 s34s45

〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉
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=
i

2
s34s45A

tree
5 (1−, 2−, 3+, 4+, 5+) . (134)

For completeness, we give the formula for the one-mass box integral multiplying this coefficient.
It is defined in Eq. (117) and has the Laurent expansion in ε,

I(12)
4 =

−2i cΓ

s34s45

{
− 1

ε2

[(
µ2

−s34

)ε
+

(
µ2

−s45

)ε
−
(

µ2

−s12

)ε]

+ Li2

(
1− s12

s34

)
+ Li2

(
1− s12

s45

)
+

1

2
ln2

(−s34

−s45

)
+
π2

6

}

+ O(ε) , (135)

where the constant cΓ is defined by

cΓ =
1

(4π)2−ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (136)

Interestingly, the result (134) is proportional to the tree amplitude. The coefficients of the four
other box integrals (labeled (23), (34), (45) and (51)) also have only gluonic contributions for this
helicity choice, and their coefficients turn out to be given by cyclic permutations of Eq. (134). Hence we
have for the gluonic contribution to the one-loop amplitude,

A1−loop
5 (1−, 2−, 3+, 4+, 5+) = Atree

5 (1−, 2−, 3+, 4+, 5+) cΓ

{

− 1

ε2

[(
µ2

−s34

)ε
+

(
µ2

−s45

)ε
−
(

µ2

−s12

)ε]

+ Li2

(
1− s12

s34

)
+ Li2

(
1− s12

s45

)
+

1

2
ln2

(−s34

−s45

)
+
π2

6

+ cyclic permutations
}

+ triangles + bubbles + rational. (137)

If we were computing the amplitude inN = 4 super-Yang-Mills theory, we would be done at this
point: One can show that the triangles, bubbles and rational parts all vanish in this theory [9]. In the case
of QCD, there is more work to do. In the next subsection we sketch a method [35, 38] for determining
the triangle coefficients.

6.4 Triangle coefficients
By analogy, we expect the triangle coefficients to be determined by the triple cut shown in Fig. 15(a),
and the bubble coefficients by the double cut shown in Fig. 15(b). The solution to the three equations
defining the triple cut,

`21(t) = `22(t) = `23(t) = 0, (138)

depends on a single complex parameter t. However, the triple cut generically also receives contributions
from the box integral terms in Fig. 12. The box contributions have to be removed before identifying the
coefficient of a given scalar triangle integral. Take any one of the three tree amplitudes in Fig. 15(a),
and imagine pinching that blob until it splits into two, exposing another loop propagator. This corner
of the triple-cut phase space has the form of a box integral contribution. The pinching imposed a fourth
cut condition, which has discrete solutions, so it must only occur at discrete values of t, say tσi where i
labels the different quadruple cuts that sit “above” the given triple cut, and σ = ± labels the two possible
discrete solutions.
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Fig. 15: (a) The triple cut and (b) the ordinary double cut used to determine the coefficients of the triangle and
bubble integrals. The loop momenta li are constrained to satisfy on-shell conditions.

The generic form of the triple cut is

C3(t) = Atree
(1) (−`1, k1, . . . , kp1 , `2)Atree

(2) (−`2, kp1+1, . . . , kp2 , `3)Atree
(3) (−`3, kp2+1, . . . , kn, `1)

= T3(t) +
∑

σ=±

∑

i

dσi
ξσi (t− tσi )

, (139)

where dσi are the previously computed box coefficients (121), and T3(t) is the triple cut “cleaned” of all
singularities at finite t.

The pole locations tσi and the residue factors ξσi do not depend on the amplitude being calculated,
but only on the kinematics of the relevant triple and quadruple cuts. They can be computed from the
solution for `i(t). For massless internal particles, the solution of Eq. (138) is [38–40]

`µ1 (t) = K̃µ
1 + K̃µ

3 +
t

2
〈K̃−1 |γµ|K̃−3 〉+

1

2t
〈K̃−3 |γµ|K̃−1 〉 , (140)

and, using momentum conservation, `2(t) = `1(t)−K1, `3(t) = `1(t) +K3. Here we have introduced
a pair of massless auxiliary vectors K̃µ

1 and K̃µ
3 , constructed from K1 and K3,

K̃µ
1 = γα

γKµ
1 + S1K

µ
3

γ2 − S1S3
, K̃µ

3 = −γα′γK
µ
3 + S3K

µ
1

γ2 − S1S3
, (141)

where S1 = K2
1 , S3 = K2

3 , and

α =
S3(S1 − γ)

S1S3 − γ2
, α′ =

S1(S3 − γ)

S1S3 − γ2
, γ = γ± = −K1 ·K3 ±

√
∆ , (142)

with
∆ = (K1 ·K3)2 −K2

1K
2
3 . (143)

The coefficient of the scalar triangle integral is the “t independent” part of the triple cut. To be
more precise, the quantity T3(t) has no singularities at finite values of t because they are all accounted
for by the box contributions shown explicitly in Eq. (139). Because this quantity has singularities only
at t = 0 and t =∞, it can be represented as,

T3(t) =

p∑

k=−p
ckt

k . (144)
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The desired quantity, the triangle coefficient, is c0. The other terms correspond to tensor triangle integrals
that integrate to zero (“spurious terms” in the language of OPP [40]). For renormalizable theories, there
are at most three loop momenta in the numerator of triangle integrals, and one can take p = 3.

One way to isolate c0 is from the t0 term in the large t limit of T3(t), or ofC3(t) itself, since the box
contributions go to zero in this limit. This is an effective method for determining c0 analytically [38].
For an automated implementation, the t0 term is usually subleading as t → ∞, making it difficult to
extract numerically. Instead one can work at finite t, and extract c0 (and the other ck coefficients) out of
the finite sum in Eq. (144) by using the discrete Fourier projection,

ck =
1

2p+ 1

p∑

j=−p

[
t0e

2πij/(2p+1)
]−k

T3

(
t0e

2πij/(2p+1)
)
, (145)

for some choice of t0. This approach is very stable numerically [35].

The other ck coefficients are actually needed in the next step, the determination of the bubble
coefficients. The double cut depends on two complex parameters. It has singularities corresponding to
both triple cuts and quadruple cuts, which can be “cleaned” in a fashion analogous to Eq. (139), using
the previously computed box and triangle information. Because the triple cut depends on a complex
parameter, all of the ck coefficients are required to characterize it. After cleaning the double cut, a
double discrete sum analogous to Eq. (145) can be used to extract the bubble coefficient. For real cut
momenta, the two parameters of the double cut have a simple physical interpretation: they are just the
angles θ, φ of one of the two intermediate states, in the center of mass frame for the channel being cut.
The double discrete sum essentially performs a spherical harmonic expansion (it is slightly different
because the intermediate momenta can be treated as complex).

The hierarchical determination of the “cut-constructible” parts of one-loop amplitudes described
here [35] is quite similar to the OPP method [40] and to the method described in Ref. [41], all of which
have been implemented in an automated fashion.

6.5 The rational part
The last remaining part of the amplitude is the rational part Rn. This component cannot be detected by
any unitarity cut in which the cut loop momentum are confined to four dimensions. We have implicitly
been assuming throughout this section that the `i are four-dimensional. This assumption was very conve-
nient because it allowed us to label the states with four-dimensional helicities, and use all the vanishing
relations for the tree amplitudes that enter the four-dimensional cuts. One way to determine the rational
part, calledD-dimensional unitarity [18,42,43], is to let the cut momenta have extra-dimensional compo-
nents, thinking of the ε inD = 4−2ε as a negative number. In this approach, there are also nonvanishing
quintuple cuts. There are no hexagon cuts because at one loop, all extra-dimensional components of
the loop momentum are equivalent; they might as well point in a single, fifth dimension. So there are
five components of the loop momentum that can be constrained by generalized cuts. The same kind of
hierarchical, automated approach described above can be applied to the D-dimensional case [44]. In this
case, one does not need to determine every extra-dimensional term in the loop integrand; the measure
factor is d−2ε`, leading to an integral of O(ε), unless there are enough factors of the extra-dimensional
components, denoted by `2(−2ε) ≡ µ2, in the numerator of the loop integrand to generate a compensating
factor of 1/ε. For more details on this method, see the review [13].

A second method for computing the rational part is to apply a BCFW shift to the integrated loop
amplitude. This approach can be implemented analytically [10], and numerically [35]. Here we just
mention a few salient points. When a complex z-dependent shift is applied to a tree amplitude, as in
Section 5, the result is a meromorphic function of z, where the poles correspond to factorization of the
tree amplitude into two lower-point amplitudes. When the same shift is applied to a loop amplitude,
branch cuts in z are generated, from the logarithms and dilogarithms appearing in the scalar integrals.
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There are also poles, whose origin from amplitude factorization is similar to the tree-level case. The
branch cuts would complicate an analysis of the poles. However, if we have already computed the cut
part Cn, we can consider shifting only the rational part, Rn = An − Cn → Rn(z).

The function Rn(z) is meromorphic, so we can contemplate computing Rn(0) from Cauchy’s
theorem, using an equation analogous to eq. (80), if we know all of its poles and residues. However,
Rn(z) has two different types of poles. The physical poles are the ones that appear in An(z), and their
residues can be computed from factorization in a similar fashion to tree level. There is a second set of
spurious poles. These poles are not poles of An(z). They come from singularities in kinematical regions
where An is non-singular, but Cn and Rn separately diverge. (One example of such a region is where
〈2−| (6 + 1) |5−〉 → 0; see section 5.3.) Becasue An(z) has no poles, the spurious-pole residues in
Rn(z) must be the negative those in Cn(z). Because the cut part is known and the locations of all the
spurious poles are known, the residues of Cn(z) are straightforward to compute. For more details on this
method, see the review [10].

Within the OPP method [40], the rational part is given by a sum of two terms, called R1 and
R2. The R1 part is obtained as a byproduct of the computation of the cut part, by taking into account
the extra-dimensional µ2 dependence appearing in the propagator denominators of the dimensionally-
regulated loop integrand [45]. The remaining R2 terms come from µ2 dependence in the numerator of
the loop integrand. As in the D-dimensional unitarity method, only a limited set of terms have enough
factors of µ2 in the numerator to produce a nonzero rational term. For renormalizable theories, these
contributions can be computed for all processes, in terms of a relatively small number of effective two-,
three- and four-point vertices [45, 46].

These new, efficient methods have enabled the construction of a variety of automated com-
puter programs for generating one-loop amplitudes, including CUTTOOLS [47], BLACKHAT [35],
ROCKET [48], SAMURAI [49], NGLUON [50], MADLOOP [51], HELAC-NLO [52], GOSAM [53],
OPEN LOOPS [54] and RECOLA [55].

For NLO QCD corrections to collider processes, it is also necessary to consider tree-level pro-
cesses with one additional parton radiated into the final state, and integrate their cross section over a
phase space that contains the soft and collinear singularities discussed in section 4. A variety of efficient,
automated methods have been developed recently for performing these phase-space integrals, based on
the methods originally developed in refs. [56, 57]. In combination with the one-loop methods sketched
here, these methods have led to a variety of NLO QCD results for LHC processes with four, five and
even six objects (electroweak particles or jets) in the final state. They have opened up a new avenue
for precision theory at hadron colliders, which has proved to be very important for gaining quantitative
control over important Standard Model backgrounds, as well as for performing detailed experimental
studies of QCD dynamics.

7 Conclusions
In these notes, we have only scratched the surface of modern techniques for computing scattering am-
plitudes. We covered the general formalism and factorization properties of helicity amplitudes, explored
tree-level analyticity and the BCFW recursion relation, and described some of the techniques for using
generalized unitarity at one loop. Numerous additional details are required in order to assemble full
one loop QCD amplitudes, many of which are discussed in other reviews [10–12], and in particular the
comprehensive review [13].

We did not touch on multi-loop scattering amplitudes at all, but this is an exceedingly rich subject.
Amplitudes in N = 4 super-Yang-Mills theory — QCD’s maximally supersymmetric cousin — have
been computed using similar ideas, through many loops and for many external legs. Remarkable prop-
erties have been found, leading to new approaches. For more in this direction, as well as applications to
supergravity, the reader can consult the very recent, authoritative review [14].
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The multi-loop applications of unitarity-based methods to QCD are still in their infancy, but they
are being developed very rapidly now. For the simplest 2 → 2 processes, the principles of generalized
unitarity were applied a while ago [58–60], but not in a way that could be automatically extended to
more complicated processes. The latter direction has seen important recent progress [61–64], but there
is still a ways to go before two-loop QCD amplitudes for generic 2 → 3 processes will be available. A
large part of the problem is not just determining the loop integrand, but evaluating all the loop integrals.

I hope that some of you who have made it this far will be encouraged to explore further, and indeed
to push the boundaries of our knowledge about scattering amplitudes and their applications to collider
physics as well as other problems.
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